102 research outputs found

    IN SILICO ANALYSIS OF INHIBITOR AND SUBSTRATE BINDING SITE OF SERRAPEPTIDASE FROM SERRATIA MARCESCENS MTCC 8708

    Get PDF
    Objective: Serrapeptidase is a therapeutic enzyme broadly used as an anti-inflammatory drug to treat inflammatory diseases like arthritis, bronchitis, fibrocystic breast disease and sinusitis. The objective of present study is in silco analyzes of the substrate and inhibitor binding sites of serratiopeptidase, expressed from a cloned gene.Methods: The gene encoding Serrapeptidase was amplified from genomic DNA of Serratia marcescens MTCC 8707, an isolated from the flowers of summer squash plants. The gene was sequenced, the nucleotide sequence of 1464 nucleotides was submitted to Gen Bank nucleotide database and accession number GI: KP869847 obtained. The develop amino acid sequence was used to predict 3D structure using different bioinformatics tools and software's Further, CABS-dock and Swiss Dock, the docking servers were used for enzyme-substrate/inhibitor binding site analysis. The inflammatory mediators, bradykinin, and substance-P were used as substrates, whereas, EDTA and Lisinopril were used as an inhibitor for serrapeptidase. UCSF Chimera program was used for interactive visualization and analysis of docked results.Results: The docking studies show substrates bradykinin and substance-P bind near zinc binding site with minimum RMSD value and the inhibitors EDTA and lisinopril showed favorable interaction at zinc binding site of serrapeptidase with minimum free energy.Conclusion: The result of docking studies confirm that the substrate or inhibitor binds near zinc binding domain (HEXXH.) and the peptide bond of the substrate can be effectively cleaved by serrapeptidase.Keywords: Serrapeptidase, Anti-inflammation, Arthritis, Molecular docking, Drug discovery, Protein-peptide interaction, Bradykinin, Substance-

    Ion beam-induced luminescence and photoluminescence of 100 MeV Si8+ ion irradiated kyanite single crystals

    Get PDF
    lonoluminescence (IL) of kyanite single crystals during 100 MeV Si8+ ion irradiation has been studied in the fluence range 1.87-7.50 x 10(11) ions/cm(2). Photoluminescence (PL) of similar dimensional crystals was recorded with same ions and energy in the fluence range 1 x 10(11) -5 x 10(13) ions/cm(2) with an excitation of 442 non He-Cd laser beam. A sharp IL and broad PL peaks at similar to 689 and 706 run were recorded. This is attributed to luminescence centers activated by Fe2+ and Fe3+ ions. It is observed that up to a given fluence, the IL and PL peak intensities increase with increase of Si8+ ion fluence. The stability of the chemical species was Studied on with and without irradiated samples by means of FT-IR spectroscopy. The results confirm that the O-Si-H type bonds covering on the surface of the sample. This layer might be acting as a protective layer and there by reducing the number of non-radiative recombination centers. (c) 2008 Elsevier Ltd. All rights reserved

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    <span style="font-size:12.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-ansi-language: EN-GB;mso-fareast-language:EN-US;mso-bidi-language:AR-SA" lang="EN-GB">Synthesis, characterisation, docking analysis and biological evaluation of <img src='/image/spc_char/alpha.gif' border=0>,<img src='/image/spc_char/alpha.gif' border=0>′-<i>bis</i>(<i style="mso-bidi-font-style:normal">p</i>-dimethylamino­benzylidene)-<img src='/image/spc_char/gamma2.gif' border=0>-methylcyclohexanone</span></span></span></span></span></span></span>

    No full text
    282-288,'-bis(p-Dimethylamino­benzylidene)--methylcyclohexanone (BMABMC) C25H30ON2, has been synthesised and characterised by elemental analysis, 1H and 13C NMR, mass spectroscopic techniques and X-ray diffraction (XRD) studies. The single crystal XRD studies of the title compound reveals the presence of C–H...O intermolecular hydrogen bonding <span style="mso-ansi-language: EN-IN">interactions linking inversion-related molecules into a dimer forming a ring of graph set R22(22). The antibacterial activitiy of the compound has been screened in vitro against the organisms. To evaluate the inhibition of HIV-1 integrase activity, molecular docking was performed and the study reveals a hydrophobic interaction with the catalytic core residues showing moderate inhibitory activity on HIV-1 integrase. The semi-empirical quantum chemical calculations were also performed using MOPAC2009 (PM3) for optimization of the geometry and the chemical activity of molecule. HOMO–LUMO transition implied an electron density transfer from C–N and C–C bonds at the edge of the molecule towards C–O and C–C bonds linked to central distorted cyclohexanone ring. The HOMO–LUMO energy gap of 7.778 eV reflects the chemical activity of the molecule thereby resulting charge transfer interaction. </span
    corecore