999 research outputs found

    An experience with off pump technique for repair of anomalous left coronary artery from pulmonary artery (ALCAPA)

    Get PDF
    AbstractBackgroundAnomalous origin of left coronary artery from pulmonary artery is a very rare disease with incidence of one every 300,000 live births. It has a high mortality of 80% in the first year of life.This observational study summarized our experience using the technique of subclavian arterial bypass without the use of cardiopulmonary bypass (CPB) for treatment of this coronary anomaly in pediatric population. The study aims to revive an earlier technique, with modifications, as an alternative to the existing coronary translocation.MethodsFrom 2009 till 2015, six consecutive infants were operated by a single surgeon using subclavian artery to left coronary artery bypass done off pump, to establish a two coronary circulation.ResultsFive patients had an improvement in their LV ejection fractions at the time of the last follow-up. Angiography done in two cases after 2 and 6 years after surgery revealed good flow in the left coronary artery and good growth in the length of subclavian artery. There was one surgical mortality in this series.ConclusionsThe technique of off pump subclavian arterial bypass for anomalous origin of the left coronary artery from the pulmonary artery is a viable alternative to the existing standard technique of coronary translocation. It essentially eliminates extracorporeal circulatory support or a left heart bypass that may be needed after coronary translocation. Also, the advantage of avoiding CPB, both in economic terms and also the adverse effects related to use of bypass in this very sick hearts, cannot be disregarded

    Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome

    Get PDF
    The profiles of patients with fulminant hepatic failure (FHF) from developing countries have not been reported earlier. The current study was conducted prospectively, at a single tertiary care center in India, to document the demographic and clinical characteristics, natural course, and causative profile of patients with FHF as well as to define simple prognostic markers in these patients. Four hundred twenty-three consecutive patients with FHF admitted from January 1987 to June 1993 were included in the study. Each patient's serum was tested for various hepatotropic viruses. Univariate Cox's regression for 28 variables, multivariate Cox's proportional hazard regression, stepwise logistic regression, and Kaplan-Meier survival analysis were done to identify independent predictors of outcome at admission. All patients presented with encephalopathy within 4 weeks of onset of symptoms. Hepatotropic viruses were the likely cause in most of these patients. Hepatitis A (HAV), hepatitis B (HBV), hepatitis D (HDV) viruses, and antitubercular drugs could be implicated as the cause of FHF in 1.7% (n = 7), 28% (n = 117), 3.8% (n = 16), and 4.5% (n = 19) patients, respectively. In the remaining 62% (n = 264) of patients the serological evidence of HAV, HBV, or HDV infection was lacking, and none of them had ingested hepatotoxins. FHF was presumed to be caused by non-A, non-B virus(es) infection. Sera of 50 patients from the latter group were tested for hepatitis E virus (HEV) RNA and HCV RNA. In 31 (62%), HEV could be implicated as the causative agent, and isolated HCV RNA could be detected in 7 (19%). Two hundred eighty eight (66%) patients died. Approximately 75% of those who died did so within 72 hours of hospitalisation. One quarter of the female patients with FHF were pregnant. Mortality among pregnant females, nonpregnant females, and male patients with FHF was similar (P > .1). Univariate analysis showed that age, size of the liver assessed by percussion, grade of coma, presence of clinical features of cerebral edema, presence of infection, serum bilirubin, and prothrombin time prolongation over controls at admission were related to survival (P < .01). The rapidity of onset of encephalopathy and cause of FHF did not influence the outcome. Cox's proportional hazard regression showed age ≥ 40 years, presence of cerebral edema, serum bilirubin ≥ 15 mg/dL, and prothrombin time prolongation of 25 seconds or more over controls were independent predictors of outcome. Ninety-three percent of the patients with three or more of the above prognostic markers died. The sensitivity, specificity, positive predictive value, and the negative predictive value of the presence of three or more of these prognostic factors for mortality was 93%, 80%, 86%, and 89.5%, respectively, with a diagnostic accuracy of 87.3%. We conclude that most of our patients with FHF might have been caused by hepatotropic viral infection, and non-A, non-B virus(es) seems to be the dominant hepatotropic viral infection among these patients. They presented with encephalopathy within 4 weeks of the onset of symptoms. Pregnancy, cause, and rapidity of onset of encephalopathy did not influence survival. The prognostic model developed in the current study is simple and can be performed at admission

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run (O3). In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive sub-band, starting at 256.06256.06Hz, we report an upper limit on gravitational wave strain (at 95%95 \% confidence) of h095%=6.16×1026h_{0}^{95\%}=6.16\times10^{-26}, assuming the orbital inclination angle takes its electromagnetically restricted value ι=44\iota=44^{\circ}. The upper limits on gravitational wave strain reported here are on average a factor of 3\sim 3 lower than in the O2 HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain sub-bands, assuming ι=44\iota=44^{\circ}

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Get PDF
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95\% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure
    corecore