92 research outputs found

    Wide-Band Radar for Measuring Thickness of Sea Ice

    Get PDF
    A wide-band penetrating radar system for measuring the thickness of sea ice is under development. The need for this or a similar system arises as follows: Spatial and temporal variations in the thickness of sea ice are important indicators of heat fluxes between the ocean and atmosphere and, hence, are important indicators of climate change in polar regions. A remote-sensing system that could directly measure the thickness of sea ice over a wide thickness range from aboard an aircraft or satellite would be of great scientific value. Obtaining thickness measurements over a wide region at weekly or monthly time intervals would contribute significantly to understanding of changes in the spatial distribution and of the mass balance of sea ice. A prototype of the system was designed on the basis of computational simulations directed toward understanding what signal frequencies are needed to satisfy partly competing requirements to detect both bottom and top ice surfaces, obtain adequate penetration despite high attenuation in the lossy sea-ice medium, and obtain adequate resolution, all over a wide thickness range. The prototype of the system is of the frequency-modulation, continuous-wave (FM-CW) type. At a given time, the prototype functions in either of two frequency-band/operational-mode combinations that correspond to two thickness ranges: a lower-frequency (50 to 250 MHz) mode for measuring thickness greater than about 1 m, and a higher frequency (300 to 1,300 MHz) mode for measuring thickness less than about 1 m. The bandwidth in the higher-frequency (lesser-thickness) mode is adequate for a thickness resolution of 15 cm; the bandwidth in the lower-frequency (greater-thickness) mode is adequate for a thickness resolution of 75 cm. Although a thickness resolution of no more than 25 cm is desired for scientific purposes, the 75-cm resolution was deemed acceptable for the purpose of demonstrating feasibility. The prototype was constructed as a modified version of a 500-to-2,000-MHz FM-CW radar system developed previously for mapping near-surface internal layers of the Greenland ice sheet. The prototype included two sets of antennas: one for each frequency-band/mode. For Arctic and Antarctic field tests, the prototype was mounted on a sled that was towed across the ice. The Arctic field test was performed in the lower-frequency mode on ice ranging in thickness from 1 to 4 m. In the analysis of the results of the Arctic field test, a comparison of the radar-determined ice thicknesses with actual ice thicknesses yielded an overall mean difference of 14 cm and standard deviation of 30 cm. The Antarctic field test was performed in the higher-frequency mode; analysis of the results led to the conclusion that this mode is useful for measuring thicknesses between 0.5 and 1 m. Several modifications have been conceived for implementation in further development toward an improved practical system: The system would function in a single frequency-band/mode (100 to 1,200 MHz) that would afford a resolution of about 15 cm. There would be a single antenna system that would be optimized for the entire 100-to-1,000-MHz frequency band. To enable ice-thickness surveys over larger areas, the system would be made capable of operating aboard a low-flying aircraft that could be either piloted or robotic. Data-processing techniques to deconvolve the system response have been developed on the basis of impulse-response measurements over a calm ocean. Implementation of these techniques in the system would enable correction for imperfections of the system and would thereby increase the effective sensitivity of the system

    Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Get PDF
    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform

    Glaciers and Ice Sheets Mapping Orbiter concept

    Get PDF
    This is the published version. Copyright 2006 American Geophysical UnionWe describe a concept for a spaceborne radar system designed to measure the surface and basal topography of terrestrial ice sheets and to determine the physical properties of the glacier bed. Our primary objective is to develop this new technology for obtaining spaceborne estimates of the thickness of the polar ice sheets with an ultimate goal of providing essential information to modelers estimating the mass balance of the polar ice sheets and estimating the response of ice sheets to changing climate. Our new technology concept employs VHF and P-band interferometric radars using a novel clutter rejection technique for measuring surface and bottom topographies of polar ice sheets from aircraft and spacecraft. Our approach will enable us to reduce signal contamination from surface clutter, measure the topography of the glacier bed at better than 1 km intervals with an accuracy of 20 m, and paint a picture of variations in bed characteristics. The technology will also have applications for planetary exploration including studies of the Martian ice caps and the icy moons of the outer solar system. Through the concept developed here we believe that we can image the base and map the three-dimensional basal topography beneath an ice sheet at up to 5 km depth

    An ice stream margin as seen with high resolution radar

    Get PDF
    In connection with the East Grip ice core drilling project airborne and groundbased multichannel radar systems were used to look in detail at the internal structures inside and outside of the Northeast Greenland Icestream. While the icestream margins surface expression is just delineated by slight depressions their internal structures are characterized by rather complicated multifold elements. These features hopefully can be used to better characterize the dynamics inherent in icestream systems

    An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Get PDF
    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar

    Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    Get PDF
    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993

    Subglacial controls on the flow of Institute Ice Stream, West Antarctica

    Get PDF
    The Institute Ice Stream (IIS) rests on a reverse-sloping bed, extending >150 km upstream into the ~1.8 km deep Robin Subglacial Basin, placing it at the threshold of marine ice-sheet instability. Understanding IIS vulnerability has focused on the effect of grounding-line melting, which is forecast to increase significantly this century. Changes to ice-flow dynamics are also important to IIS stability, yet little is known about them. Here we reveal the trunk of the IIS occurs downstream of the intersection of three discrete subglacial features; a large ‘active’ subglacial lake, a newly-discovered sharp transition to a zone of weak basal sediments, and a major tectonic rift. The border of IIS trunk flow is confined by the sediment on one side, and by a transition between basal melting and freezing at the border with the Bungenstock Ice Rise. By showing how basal sediment and water dictate present-day flow of IIS, we reveal that ice-sheet stability here is dependent on this unusual arrangement

    Hard rock landforms generate 130 km ice shelf channels through water focusing in basal corrugations

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Satellite imagery reveals flowstripes on Foundation Ice Stream parallel to ice flow, and meandering features on the ice-shelf that cross-cut ice flow and are thought to be formed by water exiting a well-organised subglacial system. Here, ice-penetrating radar data show flow-parallel hard-bed landforms beneath the grounded ice, and channels incised upwards into the ice shelf beneath meandering surface channels. As the ice transitions to flotation, the ice shelf incorporates a corrugation resulting from the landforms. Radar reveals the presence of subglacial water alongside the landforms, indicating a well-organised drainage system in which water exits the ice sheet as a point source, mixes with cavity water and incises upwards into a corrugation peak, accentuating the corrugation downstream. Hard-bedded landforms influence both subglacial hydrology and ice-shelf structure and, as they are known to be widespread on formerly glaciated terrain, their influence on the ice-sheet-shelf transition could be more widespread than thought previously.NASA grant # NNX10AT68GANT # NT-0424589University of KansasUK NERC AFI grant NE/G013071/

    Deformation structures at the margins of ice streams

    Get PDF
    Ice streams are fast moving regions within the large ice sheets of Greenland and Antarctica. Recent developments of high resolution ice sounding radar systems for deployment from an aircraft or on the ground allow a detailed view of internal structures associated with the particular stress and strain fields related to the particular flow fields across the margins between slow and fast moving ice. Exemplary data will be shown from the margins of the North-East Greenland ice stream which were obtained in association with the EASTGRIP icecore drilling project

    Measuring Height Change Around the Periphery of the Greenland Ice Sheet With Radar Altimetry

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Ice loss measurements around the periphery of the Greenland Ice Sheet can provide key information on the response to climate change. Here we use the excellent spatial and temporal coverage provided by the European Space Agency (ESA) CryoSat satellite, together with NASA airborne Operation IceBridge and automatic weather station data, to study the influence of changing conditions on the bias between the height estimated by the satellite radar altimeter and the ice sheet surface. Surface and near-surface conditions on the ice sheet periphery change with season and geographic position in a way that affects the returned altimeter waveform and can therefore affect the estimate of the surface height derived from the waveform. Notwithstanding the possibility of a varying bias between the derived and real surface, for the lower accumulation regions in the western and northern ice sheet periphery (<∼1 m snow accumulation yearly) we show that the CryoSat altimeter can measure height change throughout the year, including that associated with ice dynamics, summer melt and winter accumulation. Further, over the 9-year CryoSat lifetime it is also possible to relate height change to change in speed of large outlet glaciers, for example, there is significant height loss upstream of two branches of the Upernavik glacier in NW Greenland that increased in speed during this time, but much less height loss over a third branch that slowed in the same time period. In contrast to the west and north, winter snow accumulation in the south-east periphery can be 2–3 m and the average altimeter height for this area can decrease by up to 2 m during the fall and winter when the change in the surface elevation is much smaller. We show that vertical downward movement of the dense layer from the last summer melt, coupled with overlying dry snow, is responsible for the anomalous altimeter height change. However, it is still possible to estimate year-to-year height change measurements in this area by using data from the late-summer to early fall when surface returns dominate the altimeter signal
    • …
    corecore