105 research outputs found

    Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models

    Get PDF
    The Baltic Sea is a highly frequented shipping area with busy shipping lanes close to densely populated regions. Exhaust emissions from ship traffic into the atmosphere do not only enhance air pollution, they also affect the Baltic Sea environment through acidification and eutrophication of marine waters and surrounding terrestrial ecosystems. As part of the European BONUS project SHEBA (Sustainable Shipping and Environment of the Baltic Sea region), the transport, chemical transformation and fate of atmospheric pollutants in the Baltic Sea region were simulated with three regional chemistry transport model (CTM) systems, CMAQ, EMEP/MSC-W and SILAM, with grid resolutions between 4 and 11&thinsp;km. The main goal was to quantify the effect that shipping emissions have on the regional air quality in the Baltic Sea region when the same shipping emission dataset but different CTMs are used in their typical set-ups. The performance of these models and the shipping contribution to the results of the individual models were evaluated for sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM2.5). Model results from the three CTMs for total air pollutant concentrations were compared to observations from rural and urban background stations of the AirBase monitoring network in the coastal areas of the Baltic Sea region. Observed PM2.5 in summer was underestimated strongly by CMAQ and to some extent by EMEP/MSC-W. Observed PM2.5 in winter was underestimated by SILAM. In autumn all models were in better agreement with observed PM2.5. The spatial average of the annual mean O3 in the EMEP/MSC-W simulation was ca. 20&thinsp;% higher compared to the other two simulations, which is mainly the consequence of using a different set of boundary conditions for the European model domain. There are significant differences in the calculated ship contributions to the levels of air pollutants among the three models. EMEP/MSC-W, with the coarsest grid, predicted weaker ozone depletion through NO emissions in the proximity of the main shipping routes than the other two models. The average contribution of ships to PM2.5 levels in coastal land areas is in the range of 3.1&thinsp;%–5.7&thinsp;% for the three CTMs. Differences in ship-related PM2.5 between the models are mainly attributed to differences in the schemes for inorganic aerosol formation. Differences in the ship-related elemental carbon (EC) among the CTMs can be explained by differences in the meteorological conditions, atmospheric transport processes and the applied wet-scavenging parameterizations. Overall, results from the present study show the sensitivity of the ship contribution to combined uncertainties in boundary conditions, meteorological data and aerosol formation and deposition schemes. This is an important step towards a more reliable evaluation of policy options regarding emission regulations for ship traffic and the planned introduction of a nitrogen emission control area (NECA) in the Baltic Sea and the North Sea in 2021.</p

    Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations

    Get PDF
    Abstract. The main uncertainties regarding the estimation of changes in the Earth's energy budget are related to the role of atmospheric aerosols. These changes are caused by aerosol–radiation (ARIs) and aerosol–cloud interactions (ACIs), which heavily depend on aerosol properties. Since the 1980s, many international modeling initiatives have studied atmospheric aerosols and their climate effects. Phase 3 of the Air Quality Modelling Evaluation International Initiative (AQMEII) focuses on evaluating and intercomparing regional and linked global/regional modeling systems by collaborating with the Task Force on the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) initiative. Within this framework, the main aim of this work is the assessment of the representation of aerosol optical depth (AOD) and the Ångström exponent (AE) in AQMEII Phase 3 simulations over Europe. The evaluation was made using remote-sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua platforms, and the instruments belonging to the ground-based Aerosol Robotic Network (AERONET) and the Maritime Aerosol Network (MAN). Overall, the skills of AQMEII simulations when representing AOD (mean absolute errors from 0.05 to 0.30) produced lower errors than for the AE (mean absolute errors from 0.30 to 1). Regardless of the models or the emissions used, models were skillful at representing the low and mean AOD values observed (below 0.5). However, high values (around 1.0) were overpredicted for biomass burning episodes, due to an underestimation in the common fires' emissions, and were overestimated for coarse particles – principally desert dust – related to the boundary conditions. Despite this behavior, the spatial and temporal variability of AOD was better represented by all the models than AE variability, which was strongly underestimated in all the simulations. Noticeably, the impact of the model selection when representing aerosol optical properties is higher than the use of different emission inventories. On the other hand, the influence of ARIs and ACIs has a little visible impact compared to the impact of the model used

    Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1

    Get PDF
    Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C ordoba, Spain, and Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C ordoba (3.9 pg Ole e 1/pollen) than in Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C ordoba were 2.4 times higher than in Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical

    Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions

    Get PDF
    An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440&thinsp;nm (ω0,440) is on average overestimated (underestimated) by 3–5&thinsp;% when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω0,440 by ∼14&thinsp;%. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω0,440 bias to -1/-3&thinsp;%. The black carbon absorption enhancement (Eabs) in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of ∼1.5. The partial internal mixing reduces Eabs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE675440 is overestimated by 70–120&thinsp;%. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.</p

    Evaluating the capability of regional-scale air quality models to cature the vertical distribution of pollutants

    Get PDF
    This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and European (EU) continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS) and direction (WD), temperature (T), and relative humidity (RH), are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC) programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas) and one in Europe (Frankfurt), from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs). The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL) or free troposphere) being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≤ 0.01 K), WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability), while above 1000 m, the model performance improves (correlation coefficient often above 0.9). The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large discrepancies among models are observed, especially in EU. CO mixing ratios show the largest range of modelled-to-observed standard deviations of all the examined species at all heights and for all airports. Correlation coefficients for CO are typically below 0.6 for all sites and heights, and large errors are present at all heights, particularly in the first 250 m. Model performance for ozone in the PBL is generally good, with both bias and error within 20%. Profiles of ozone mixing ratios depend strongly on surface processes, revealed by the sharp gradient in the first 2 km (10 to 20 ppb km−1). Modelled ozone in winter is biased low at all locations in the NA, primarily due to an underestimation of ozone from the BCs. Most of the model error in the PBL is due to surface processes (emissions, transport, photochemistry), while errors originating aloft appear to have relatively limited impact on model performance at the surface. Suggestions for future work include interpretation of the model-to-model variability and common sources of model bias, and linking CO and ozone bias to the bias in the meteorological fields. Based on the results from this study, we suggest possible in-depth, process-oriented and diagnostic investigations to be carried out next

    Building an Automatic Pollen Monitoring Network (ePIN): Selection of Optimal Sites by Clustering Pollen Stations

    Get PDF
    Airborne pollen is a recognized biological indicator and its monitoring has multiple uses such as providing a tool for allergy diagnosis and prevention. There is a knowledge gap related to the distribution of pollen traps needed to achieve representative biomonitoring in a region. The aim of this manuscript is to suggest a method for setting up a pollen network (monitoring method, monitoring conditions, number and location of samplers etc.). As a case study, we describe the distribution of pollen across Bavaria and the design of the Bavarian pollen monitoring network (ePIN), the first operational automatic pollen network worldwide. We established and ran a dense pollen monitoring network of 27 manual Hirst-type pollen traps across Bavaria, Germany, during 2015. Hierarchical cluster analysis of the data was then performed to select the locations for the sites of the final pollen monitoring network. According to our method, Bavaria can be clustered into three large pollen regions with eight zones. Within each zone, pollen diversity and distribution among different locations does not vary significantly. Based on the pollen zones, we opted to place one automatic monitoring station per zone resulting in the ePIN network, serving 13 million inhabitants. The described method defines stations representative for a homogeneous aeropalynologically region, which reduces redundancy within the network and subsequent costs (in the study case from 27 to 8 locations). Following this method, resources in pollen monitoring networks can be optimized and allergic citizens can then be informed in a timely and effective way, even in larger geographical areas

    Mesoscale Atmospheric Transport of Ragweed Pollen Allergens from Infected to Uninfected Areas

    Get PDF
    Allergenic ragweed (Ambrosia spp.) pollen grains, after being released from anthers, can be dispersed by air masses far from their source. However, the action of air temperature,humidity and solar radiation on pollen grains in the atmosphere could impact on the ability of long distance transported (LDT) pollen to maintain allergenic potency. Here, we report that the major allergen of Ambrosia artemisiifolia pollen (Amb a 1) collected in ambient air during episodes of LDT still have immunoreactive properties. The amount of Amb a 1 found in LDT ragweed pollen grains was not constant and varied between episodes. In addition to allergens in pollen sized particles, we detected reactive Amb a 1 in subpollen sized respirable particles. These findings suggest that ragweed pollen grains have the potential to cause allergic reactions, not only in the heavily infested areas but, due to LDT episodes, also in the regions unaffected by ragweed populations

    Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    Get PDF
    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 I min(-1) at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 I min(-1) with a Chemvol (R) high-volume cascade impactor equipped with stages PM > 10 mu m, 10 mu m > PM > 2.5 mu m, and in Germany also 2.5 mu m > PM > 0.12 mu m. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FC epsilon R1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 mu m fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment.European CommissionChristine Kühne - Center for Allergy Research and Educatio

    Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection

    Full text link
    The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100  ×  100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat
    corecore