139 research outputs found

    The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components

    Get PDF
    Without post-manufacture HIPing the fatigue life of electron beam melting (EBM) additively manufactured parts is currently dominated by the presence of porosity, exhibiting large amounts of scatter. Here we have shown that the size and location of these defects is crucial in determining the fatigue life of EBM Ti-6Al-4V samples. X-ray computed tomography has been used to characterise all the pores in fatigue samples prior to testing and to follow the initiation and growth of fatigue cracks. This shows that the initiation stage comprises a large fraction of life (>70 %). In these samples the initiating defect was often some way from being the largest (merely within the top 35 % of large defects). Using various ranking strategies including a range of parameters, we found that when the proximity to the surface and the pore aspect ratio were included the actual initiating defect was within the top 3 % of defects ranked most harmful. This lays the basis for considering how the deposition parameters can be optimised to ensure that the distribution of pores is tailored to the distribution of applied stresses in additively manufactured parts to maximise the fatigue life for a given loading cycle

    Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components

    Get PDF
    Laser polishing (LP) is an emerging technique with the potential to be used for post-build, or in-situ, precision smoothing of rough, fatigue-initiation prone, surfaces of additive manufactured (AM) components. LP uses a laser to re-melt a thin surface layer and smooths the surface by exploiting surface tension effects in the melt pool. However, rapid re-solidification of the melted surface layer and the associated substrate thermal exposure can significantly modify the subsurface material. This study has used an electron beam melted (EBM) Ti6Al4V component, representing the worst case scenario in terms of roughness for a powder bed process, as an example to investigate these issues and evaluate the capability of the LP technique for improving the surface quality of AM parts. Experiments have shown that the surface roughness can be reduced to below Sa = 0.51 μm, which is comparable to a CNC machined surface, and high stress concentrating defects inherited from the AM process were removed by LP. However, the re-melted layer underwent a change in texture, grain structure, and a martensitic transformation, which was subsequently tempered in-situ by repeated beam rastering and resulted in a small increase in sub-surface hardness. In addition, a high level of near-surface tensile residual stresses was generated by the process, although they could be relaxed to near zero by a standard stress relief heat treatment

    Appropriate referral and selection of patients with chronic pain for spinal cord stimulation: European consensus recommendations and e-health tool

    Get PDF
    Background: Spinal cord stimulation (SCS) is an established treatment for chronic neuropathic, neuropathic-like and ischaemic pain. However, the heterogeneity of patients in daily clinical practice makes it often challenging to determine which patients are eligible for this treatment, resulting in undesirable practice variations. This study aimed to establish patient-specific recommendations for referral and selection of SCS in chronic pain. Methods: A multidisciplinary European panel used the RAND/UCLA Appropriateness Method (RUAM) to assess the appropriateness of (referral for) SCS for 386 clinical scenarios in four pain areas: chronic low back pain and/or leg pain, complex regional pain syndrome, neuropathic pain syndromes and ischaemic pain syndromes. In addition, the panel identified a set of psychosocial factors that are relevant to the decision for SCS treatment. Results: Appropriateness of SCS was strongly determined by the neuropathic or neuropathic-like pain component, location and spread of pain, anatomic abnormalities and previous response to therapies targeting pain processing (e.g. nerve block). Psychosocial factors considered relevant for SCS selection were as follows: lack of engagement, dysfunctional coping, unrealistic expectations, inadequate daily activity level, problematic social support, secondary gain, psychological distress and unwillingness to reduce high-dose opioids. An educational e-health tool was developed that combines clinical and psychosocial factors into an advice on referral/selection for SCS. Conclusions: The RUAM was useful to establish a consensus on patient-specific criteria for referral/selection for SCS in chronic pain. The e-health tool may help physicians learn to apply an integrated approach of clinical and psychosocial factors. Significance: Determining the eligibility of SCS in patients with chronic pain requires careful consideration of a variety of clinical and psychosocial factors. Using a systematic approach to combine evidence from clinical studies and expert opinion, a multidisciplinary European expert panel developed detailed recommendations to support appropriate referral and selection for SCS in chronic pain. These recommendations are available as an educational e-health tool (https://www.scstool.org/)
    • …
    corecore