31 research outputs found

    Behavioral changes in mice caused by Toxoplasma gondii invasion of brain

    Get PDF
    Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls

    Chronic Toxoplasma Infection Modifies the Structure and the Risk of Host Behavior

    Get PDF
    The intracellular parasite Toxoplasma has an indirect life cycle, in which felids are the definitive host. It has been suggested that this parasite developed mechanisms for enhancing its transmission rate to felids by inducing behavioral modifications in the intermediate rodent host. For example, Toxoplasma-infected rodents display a reduction in the innate fear of predator odor. However, animals with Toxoplasma infection acquired in the wild are more often caught in traps, suggesting that there are manipulations of intermediate host behavior beyond those that increase predation by felids. We investigated the behavioral modifications of Toxoplasma-infected mice in environments with exposed versus non-exposed areas, and found that chronically infected mice with brain cysts display a plethora of behavioral alterations. Using principal component analysis, we discovered that most of the behavioral differences observed in cyst-containing animals reflected changes in the microstructure of exploratory behavior and risk/unconditioned fear. We next examined whether these behavioral changes were related to the presence and distribution of parasitic cysts in the brain of chronically infected mice. We found no strong cyst tropism for any particular brain area but found that the distribution of Toxoplasma cysts in the brain of infected animals was not random, and that particular combinations of cyst localizations changed risk/unconditioned fear in the host. These results suggest that brain cysts in animals chronically infected with Toxoplasma alter the fine structure of exploratory behavior and risk/unconditioned fear, which may result in greater capture probability of infected rodents. These data also raise the possibility that selective pressures acted on Toxoplasma to broaden its transmission between intermediate predator hosts, in addition to felid definitive hosts

    Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    Get PDF
    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell

    The Distribution of Toxoplasma gondii Cysts in the Brain of a Mouse with Latent Toxoplasmosis: Implications for the Behavioral Manipulation Hypothesis

    Get PDF
    reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism

    Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells

    Get PDF
    Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals
    corecore