617 research outputs found

    Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements

    Full text link
    We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determined with wires of 0.2 mm and 0.3 mm diameter. We use the sensor for the quality assurance of the wire electrode modules for the KATRIN neutrino mass experiment. We expect that the precision is at least comparable or better if the wires are thinner. Such a device could be well suited for the measurement of wire chamber geometries even with more than one wire layer.Comment: 15 pages, 8 figure

    The KATRIN Experiment

    Full text link
    The KArlsruhe TRitium Neutrino mass experiment, KATRIN, aims to search for the mass of the electron neutrino with a sensitivity of 0.2 eV/c^2 (90% C.L.) and a detection limit of 0.35 eV/c^2 (5 sigma). Both a positive or a negative result will have far reaching implications for cosmology and the standard model of particle physics and will give new input for astroparticle physics and cosmology. The major components of KATRIN are being set up at the Karlsruhe Institut of Technology in Karlsruhe, Germany, and test measurements of the individual components have started. Data taking with tritium is scheduled to start in 2012.Comment: 3 pages, 1 figure, proceedings of the TAUP 2009 International Conference on Topics in Astroparticle and Underground Physics, to be published in Journal of Physics, Conference Serie

    First high-energy proton tomography of a mouse

    Get PDF

    Ion Beam Tracking using Ultrasound Motion Detection

    Get PDF

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    Socio-economic projections in urban climate change adaptation planning: Practices and prospects for just adaptation

    Get PDF
    Urban climate change adaptation efforts have often been criticized for exacerbating the inequitable impacts of climate change by failing to address the social, economic, and environmental impacts of adaptation. There is an urgent need to incorporate equity and justice concerns in adaptation planning as well as approaches and tools that enable such integration. However, climate justice scholarship to date has largely focused on theoretical questions and there is still a lack of focus on the operational aspects for supporting the implementation of climate justice. In this article, we argue that existing tools already in use in planning practice have the potential to support this aim. In particular, we argue that the integration of socio-economic data into adaptation planning practice could be an avenue for justice-centered urban adaptation. While the potential is clear, how to do this is still underexplored. To shed light on this question, we conduct a systematic review of research on the use of socio-economic projections in urban climate change adaptation planning and decision-making to investigate how these could be used as a tool to ensure just urban adaptation. Grounded in a recognized conceptual framework on urban climate justice, we analyze the evolution of research on socio-economic projections in urban adaptation and evaluate the potential for existing applications to promote climate justice. Through this analysis, we find that while socio-economic projections have not been explicitly linked to justice outcomes in the existing literature, clear potentials exist for these to be used as a tool to promote distributive, procedural, and recognition and restorative justice. Finally, we propose an operational framework for the application of socio-economic projections to promote justice-centered urban adaptation. Applying such a framework to urban adaptation planning can help center justice concerns in larger strategic adaptation planning efforts and enable a new form of more inclusive, data-driven climate governance in cities based on current know-how and existing capacities.MO’s research is funded by the European Union (ERC , IMAGINE adaptation, 101039429 ). MO is also supported by María de Maeztu excellence accreditation 2018-2022 (Ref. MDM-2017-0714) funded by MCIN / AEI / 10.13039/501100011033 /; and by the Basque Government through the BERC 2022-2025 program

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Wave Propagation in Auxetic Tetrachiral Honeycombs

    Get PDF
    This paper describes a numerical and experimental investigation on the flexural wave propagation properties of a novel class of negative Poisson's ratio honeycombs with tetrachiral topology. Tetrachiral honeycombs are structures defined by cylinders connected by four tangent ligaments, leading to a negative Poisson's ratio (auxetic) behavior in the plane due to combined cylinder rotation and bending of the ribs. A Bloch wave approach is applied to the representative unit cell of the honeycomb to calculate the dispersion characteristics and phase constant surfaces varying the geometric parameters of the unit cell. The modal density of the tetrachiral lattice and of a sandwich panel having the tetrachiral as core is extracted from the integration of the phase constant surfaces, and compared with the experimental ones obtained from measurements using scanning laser vibrometers

    Fantasy for piano and orchestra

    Get PDF
    Instrumentation: Winds Piccolo 2 Flutes 2 Oboes 2 Bb Clarinets Bb Bass Clarinet 2 Bassoons Brass 4 Horns 2 C-Trumpets 2 Trombones Bass Trombone Tuba Tympani Percussion Player 1. Snare, Vibes Player 2. Crotales, Xylophone Player 3. Temple Blocks, Cymbols Player 4. Bass Drum Piano Large String Section
    corecore