1,297 research outputs found

    Overview of the BlockNormal Event Trigger Generator

    Get PDF
    In the search for unmodeled gravitational wave bursts, there are a variety of methods that have been proposed to generate candidate events from time series data. Block Normal is a method of identifying candidate events by searching for places in the data stream where the characteristic statistics of the data change. These change-points divide the data into blocks in which the characteristics of the block are stationary. Blocks in which these characteristics are inconsistent with the long term characteristic statistics are marked as Event-Triggers which can then be investigated by a more computationally demanding multi-detector analysis.Comment: GWDAW-8 proceedings, 6 pages, 2 figure

    Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies

    Get PDF
    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can determine the direction/time of GW bursts while the IceCube and ANTARES neutrino telescopes can also provide accurate directional information for HEN events. Requiring the consistency between both, totally independent, detection channels shall enable new searches for cosmic events arriving from potential common sources, of which many extra-galactic objects.Comment: 4 pages. To appear in the Proceedings of the 2d Heidelberg Workshop: "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelberg (Germany), January 13-16, 200

    Testing the performance of a blind burst statistic

    Full text link
    In this work we estimate the performance of a method for the detection of burst events in the data produced by interferometric gravitational wave detectors. We compute the receiver operating characteristics in the specific case of a simulated noise having the spectral density expected for Virgo, using test signals taken from a library of possible waveforms emitted during the collapse of the core of Type II Supernovae.Comment: 8 pages, 6 figures, Talk given at the GWDAW2002 worksho

    Gravity Wave and Neutrino Bursts from Stellar Collapse: A Sensitive Test of Neutrino Masses

    Full text link
    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occuring at the end of the core collapse on a timescale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO, ...) and the gravity wave antennas soon to operate (LIGO, Virgo, ...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass-degenerate. The 95 % C.L. upper limit which can be achieved varies from 0.75 eV/c2 for large electron neutrino survival probabilities to 1.1 eV/c2 when in practice all electron neutrinos convert into muon or tau neutrinos. The sensitivity is nearly independent of the supernova distance.Comment: 17 pages, 4 figure

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Lipid Profiles in HIV-Infected Patients Receiving Combination Antiretroviral Therapy: Are Different Antiretroviral Drugs Associated with Different Lipid Profiles?

    Get PDF
    Levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c), as well as the TC:HDL-c ratio, were compared in patients receiving different antiretroviral therapy regimens. Patients receiving first-line regimens including protease inhibitors (PIs) had higher TC and TG levels and TC:HDL-c ratios than did antiretroviral-naive patients; patients receiving 2 PIs had higher levels of each lipid. Ritonavir-containing regimens were associated with higher TC and TG levels and TC:HDL-c ratios than were indinavir-containing regimens; however, receipt of nelfinavir was associated with reduced risk of lower HDL-c levels, and receipt of saquinavir was associated with lower TC:HDL-c ratios. Patients receiving nonnucleoside reverse-transcriptase inhibitors had higher levels of TC and LDL-c than did antiretroviral-naive patients, although the risk of having lower HDL-c levels was lower than that in patients receiving a single PI. Efavirenz was associated with higher levels of TC and TG than was nevirapin

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors

    Full text link
    Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP}) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.Comment: 23 pages, 16 figure

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure
    corecore