68 research outputs found

    A MALDI-TOF-based method for studying the transport of BBB shuttles-enhancing sensitivity and versatility of cell-based in vitro transport models.

    Get PDF
    In recent decades, peptide blood-brain barrier shuttles have emerged as a promising solution for brain drugs that are not able to enter this organ. The research and development of these compounds involve the use of in vitro cell-based models of the BBB. Nevertheless, peptide transport quantification implies the use of large amounts of peptide (upper micromolar range for RP-HPLC-PDA) or of derivatives (e.g. fluorophore or quantum-dot attachment, radiolabeling) in the donor compartment in order to enhance the detection of these molecules in the acceptor well, although their structure is highly modified. Therefore, these methodologies either hamper the use of low peptide concentrations, thus hindering mechanistic studies, or do not allow the use of the unmodified peptide. Here we successfully applied a MALDI-TOF MS methodology for transport quantification in an in vitro BBB cell-based model. A light version of the acetylated peptide was evaluated, and the transport was subsequently quantified using a heavy internal standard (isotopically acetylated). We propose that this MALDI-TOF MS approach could also be applied to study the transport across other biological barriers using the appropriate in vitro transport models (e.g. Caco-2, PAMPA)

    RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls

    Get PDF
    A rockfall is a mass instability event frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. After its detachment, the rock mass may disaggregate and break due to the impact with the ground surface, thus producing new rock fragments. The consideration of the fragmentation of the rockfall mass is critical for the calculation of the trajectories of the blocks and the impact energies and for the assessment of the potential damage and the design of protective structures. In this paper, we present RockGIS, a GIS-based tool that simulates stochastically the fragmentation of the rockfall, based on a lumped mass approach. In RockGIS, the fragmentation is triggered by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The fragmentation model has been calibrated and tested with a 10,000 m3 rockfall that took place in 2011 near Vilanova de Banat, Eastern Pyrenees, Spain.Peer ReviewedPostprint (author's final draft

    Modelización de desprendimientos rocosos considerando la fragmentación

    Get PDF
    Determinar el riesgo al que está expuesto un edificio o una infraestructura debido a los desprendimientos rocosos mediante la Evaluación Cuantitativa de Riesgo requiere estudiar la peligrosidad, que integra la magnitud del fenómeno y la probabilidad de ocurrencia. Hoy en día la mayoría de metodologías disponibles para realizar estudios de peligrosidad no consideran la fragmentación de los bloques durante su propagación por la ladera. Este proceso tiene implicaciones directas en el estudio de la peligrosidad ya que se pueden incrementar el número de fragmentos y las energías cinéticas de los bloques disminuyen al reducirse su tamaño. En esta contribución se presenta el diseño e implementación de un módulo de fragmentación en un programa de simulación de desprendimientos rocosos llamado RockGIS y su aplicación a un caso de estudio.Postprint (published version

    Simulation of full-scale rockfall tests with a fragmentation model

    Get PDF
    In this paper, we present the upgraded version of RockGIS, a stochastic program for the numerical simulation of rockfalls and their fragmentation, based on a fractal model. The code has been improved to account for a range of fragmentation scenarios, depending on the impact conditions. In the simulation, the parameters of the fractal fragmentation model that define the sizes of the generated fragments were computed at each impact according to the kinematic conditions. The performance of the upgraded code was verified and validated by real-scale rockfall tests performed in a quarry. The tests consisted of the release of 21 limestone blocks. For each release, the size and spatial distribution of the fragments generated by the impacts were measured by hand and from orthophotos taken via drone flights. The trajectories of the blocks and the resulting fragments were simulated with the code and calibrated with both the volume distribution and the runout distances of the fragments. Finally, as all the relevant rockfall parameters involved were affected by strong uncertainty and spatial variability, a parametric analysis was carried out and is discussed.This work has been carried out with the support of the Spanish Ministry of Economy and Competitiveness thanks to a fellowship to the first author (BES-2014-069795) and in the framework of the research project RockModels (Ref. BIA2016-75668-P, AEI/FEDER, UE). The collaboration of Canteras Hermanos Foj (Barcelona metropolitan area, Spain) is gratefully acknowledged.Peer ReviewedPostprint (published version

    Rockfall fragmentation analysis: Vilanova de Banat case study

    Get PDF
    Fragmentation is a critical mechanism for the calculation of the trajectories of the blocks and the impact energies, for the assessment of the potential damage and for the design of protec-tive structures, although few rockfall models account for it. In this contribution we present an application of the trajectory simulation tool RockGIS, which explicitly accounts for fragmen-tation, to a recent rockfall event occurred near Vilanova de Banat (Spain). All parameters of the model controlling the kinematics of the propagation and fragmentation have been calibrat-ed in order to reproduce the number of fragments generated and trajectories followed by the blocks. Several performance criteria have been considered and simulations with and without accounting for fragmentation have been performed to assess their influence. The results con-sidering fragmentation show a reasonable matching with the observations in the field.Postprint (published version

    HAI Peptide and Backbone Analogs-Validation and Enhancement of Biostability and Bioactivity of BBB Shuttles

    Get PDF
    Low effectiveness and resistance to treatments are commonplace in disorders of the central nervous system (CNS). These issues concern mainly the blood-brain barrier (BBB), which preserves homeostasis in the brain and protects this organ from toxic molecules and biohazards by regulating transport through it. BBB shuttles-short peptides able to cross the BBB-are being developed to help therapeutics to cross this barrier. BBB shuttles can be discovered by massive exploration of chemical diversity (e.g. computational means, phage display) or rational design (e.g. derivatives from a known peptide/protein able to cross). Here we present the selection of a peptide shuttle (HAI) from several candidates and the subsequent in-depth in vitro and in vivo study of this molecule. In order to explore the chemical diversity of HAI and enhance its biostability, and thereby its bioactivity, we explored two new protease-resistant versions of HAI (i.e. the retro-D-version, and a version that was N-methylated at the most sensitive sites to enzymatic cleavage). Our results show that, while both versions of HAI are resistant to proteases, the retro-D-approach preserved better transport properties

    Inhibition of Prolyl Oligopeptidase Restores Prohibitin 2 Levels in Psychosis Models: Relationship to Cognitive Deficits in Schizophrenia

    Get PDF
    Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.This research was funded by a Miguel Servet grant, MS16/00153-CP16/00153 to BR, financed and integrated into the National R+D+I and funded by the Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Health)—General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF). This work was also supported by ISCIII PI18/00213 to BR, the Predoctoral Fellowship Program from the ISCIII (PFIS) FI19/00080 to E.V, FPU fellowship from the Spanish Ministry of Education, Culture, and Sports FPU17/06000 to E.E., the CONICYT-Doctorado Becas Chile 2015, 72160426 to AV, and the CIBERSAM (Spanish Ministry of Economy, Industry, and Competitiveness, Institute of Health Carlos III). CIBERSAM will be encharged to fund open access publication fees

    Rockfalls: analysis of the block fragmentation through field experiments

    Get PDF
    Fragmentation is a common feature of rockfall that exerts a strong control on the trajectories of the generated blocks, the impact energies, and the runout. In this paper, we present a set of four real-scale rockfall tests aimed at studying the fragmentation of the rocky blocks, from the global design of the field procedure to the data analysis and the main results. A total of 124 limestone, dacite, or granite blocks ranging between 0.2 and 5 m3 were dropped from different heights (8.5 to 23.6 m) onto four slopes with different shapes (single or double bench) and slope angles (42º to 71º). The characteristics of the blocks, in particular the size, surface texture and joint condition, were measured before the drops. The trajectories of the blocks and both the initial and the impact velocities were tracked and recorded by means of three high-speed video cameras. A total of 200 block-to-ground impacts have been studied. On average, 40% of the blocks broke upon impact on the slope or on the ground, making it necessary to measure the fragments. The initial and final sizes of the blocks/fragments were measured by hand with tape, though photogrammetric techniques (UAV and terrestrial) were also used for comparison purposes. The information gathered during the field tests provides a deep insight into the fragmentation processes. On the one hand, the high-resolution slow-motion videos help to describe when and how the block breakage takes place and the spatial distribution of the pieces. On the other hand, it is possible to compute the block trajectories, the velocities, and the energy losses using videogrammetry. The results include, for instance, a block average fragmentation of 54% and 14% for the limestone and granitoids, respectively; the systematic inventory of the size fragments, which may be used for fitting the power law distributions; and after each breakage, the total angle of aperture occupied by the fragments has been measured, with values in the range 25º–145º. To figure out the different behavior of the blocks in terms of breakage/no breakage, each block-to-ground impact has been characterized with a set of parameters describing the energy level, the robustness of the substrate, and the configuration of the block contact at the impact point, among others. All these terms are combined in a function F, which is used to adjust the field data. The adjustment has been carried out, first, for the whole 200 events and later for a subset of them. The procedure and the results are described in the paper. Although the discrimination capability of F is moderately satisfactory, it is very sensitive to the test site and setup. It must be highlighted that these field tests are a unique source of data to adjust the parameters of the numerical simulation models in use for rockfall studies and risk mitigation, especially when fragmentation during the propagation is considered.The authors acknowledge the support of the Spanish Ministry of Economy and Competitiveness for the research projects RockRisk (BIA2013-42582-P), RockModels (BIA2016-75668-P, AEI, ERDF/FEDER, UE) and GeoRisk (PID2019-103974RB-I00/AEI/10.13039/501100011033). GeoRisk is funded by the Agencia Estatal de Investigación (AEI) on the framework of the Plan for Scientific-Technical Research and Innovation. The support of the Spanish Ministry of Education (grants to the second and third authors, codes FPU13/04252 and BES-2014-069795, respectively) and the BBVA Foundation (thirteenth author’s contract) is also appreciated. The collaboration of Canteras Hermanos Foj and Canteras Ponderosa S.A., Marc Janeras, and S. Moreno is greatly acknowledged. Finally, we thank two anonymous reviewers and the Editor who helped to improve the structure and content of the final version. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Peer ReviewedPostprint (published version

    The RockRisk project: rockfall risk quantification and prevention

    Get PDF
    Rockfalls are frequent instability processes in road cuts, open pit mines and quarries, steep slopes and cliffs. The orientation and persistence of joints within the rock mass define the size of the kinematically unstable rock volumes and determine the way how the detached mass be-comes fragmented upon the impact on the ground surface. Knowledge of the size and trajectory of the blocks resulting from fragmentation is critical for calculating the impact probability and intensity, the vulnerability the exposed elements and the performance of protection structures. In this contribution we summarize the main goals and achievements of the RockRisk project. We focused on the characterization of the rockfall fragmentation by means of the analysis of the fracture pattern of intact rock masses, the development of a fragmentation model and its integration into rockfall propagation analysis. The ultimate goal of the project is to quantify risk due to rockfalls and develop tools for the improvement of prevention and for protection from its occurrence.Postprint (published version
    • …
    corecore