15 research outputs found

    Development of novel arynes and application to the synthesis of polycyclic aromatic hydrocarbons

    Get PDF
    Arynes are fascinating intermediates, with a rich reactivity and synthetic versatility. Due to their ability to participate in cycloaddition reactions they constitute privileged platforms for the convergent synthesis of polycyclic aromatic hydrocarbons with potential applications in nanotechnology. This dissertation collects the authors contributions to the development of novel heteroaryne and polyarynes, and the study of the generation and reactivity of these reactive species. Furthermore, the preparation of particular arenes by using bisarynes is included, as a demonstration of the strength of aryne-based synthetic strategies

    1,7-Naphthodiyne: a new platform for the synthesis of novel, sterically congested PAHs

    Get PDF
    The synthesis of an efficient precursor of the novel 1,7-naphthodiyne synthon is reported. Preliminary experiments demonstrate the usefulness of this platform for the synthesis of sterically congested polyarenes, such as helicenes and angularly fused acene derivatives. Furthermore, a novel intramolecular aryne trapping reaction is describedFinancial support from the Spanish Ministry of Economy and Competitiveness (MINECO, CTQ2013-44142-P and MAT2013-46593-C6-6-P), the European Union (Project PAMS, contract no. 610446), Xunta de Galicia (GPC2014/25) and FEDER is gratefully acknowledgedS

    Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons

    Get PDF
    Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.We gratefully acknowledge financial support from Spanish Agencia Estatal de Investigación (AEI) (MAT2016-78293, PID2019-107338RB, FIS2017-83780-P, and the Maria de Maeztu Units of Excellence Programme MDM-2016-0618), from the European Union (EU) through Horizon 2020 (FET-Open project SPRING Grant. No. 863098), the Basque Departamento de Educación through the PhD fellowship No. PRE_2019_2_0218 (S.S.), the Xunta de Galicia (Centro de Investigación de Galicia accreditation 2019–2022, ED431G 2019/03), the University of the Basque Country (Grant IT1246-19), and the European Regional Development Fund (ERDF). I. P. also thanks Xunta de Galicia and European Union (European Social Fund, ESF) for the award of a predoctoral fellowship-Peer reviewe

    A facility and community-based assessment of scabies in rural Malawi.

    Get PDF
    Background Scabies is a neglected tropical disease of the skin, causing severe itching, stigmatizing skin lesions and systemic complications. Since 2015, the DerMalawi project provide an integrated skin diseases clinics and Tele-dermatology care in Malawi. Clinic based data suggested a progressive increase in scabies cases observed. To better identify and treat individuals with scabies in the region, we shifted from a clinic-based model to a community based outreach programme. Methodology/principal findings From May 2015, DerMalawi project provide integrated skin diseases and Tele-dermatological care in the Nkhotakota and Salima health districts in Malawi. Demographic and clinical data of all patients personally attended are recorded. Due to a progressive increase in the number of cases of scabies the project shifted to a community-based outreach programme. For the community outreach activities, we conducted three visits between 2018 to 2019 and undertook screening in schools and villages of Alinafe Hospital catchment area. Treatment was offered for all the cases and school or household contacts. Scabies increased from 2.9% to 39.2% of all cases seen by the DerMalawi project at clinics between 2015 to 2018. During the community-based activities approximately 50% of the population was assessed in each of three visits. The prevalence of scabies was similar in the first two rounds, 15.4% (2392) at the first visit and 17.2% at the second visit. The prevalence of scabies appeared to be lower (2.4%) at the third visit. The prevalence of impetigo appeared unchanged and was 6.7% at the first visit and 5.2% at the final visit. Conclusions/significance Prevalence of scabies in our setting was very high suggesting that scabies is a major public health problem in parts of Malawi. Further work is required to more accurately assess the burden of disease and develop appropriate public health strategies for its control

    Selectivity in single-molecule reactions by tip-induced redox chemistry

    No full text
    Controlling selectivity of reactions is an ongoing quest in chemistry. In this work, we demonstrate reversible and selective bond formation and dissociation promoted by tip-induced reduction-oxidation reactions on a surface. Molecular rearrangements leading to different constitutional isomers are selected by the polarity and magnitude of applied voltage pulses from the tip of a combined scanning tunneling and atomic force microscope. Characterization of voltage dependence of the reactions and determination of reaction rates demonstrate selectivity in constitutional isomerization reactions and provide insight into the underlying mechanisms. With support of density functional theory calculations, we find that the energy landscape of the isomers in different charge states is important to rationalize the selectivity. Tip-induced selective single-molecule reactions increase our understanding of redox chemistry and could lead to novel molecular machines

    Toward 2-Thiophyne: ketocarbene versus hetaryne intermediates from 2-(Trimethylsilyl)thiophen-3-yl Triflate

    No full text
    The reaction of 2-(trimethylsilyl)thiophen-3-yl triflate with CsF in the presence of 2,3,4,5-tetraphenylcyclopentadienone affords 4,5,6,7-tetraphenylbenzo[b]thiophene, as it would be expected from the hypothesized generation and trapping of 2-thiophyne. However, a detailed experimental and computational study discards the intermediacy of this elusive 5-membered hetaryne. Instead, a complex mechanism involving the generation of an intermediate ketocarbene, which adds to the cyclopentadienone to give an isolable tricyclic intermediate, followed by thermal rearrangements, is proposedFinancial support from the Spanish Agencia Estatal de Investigación (Nos. PID2019-110037GB-I00 and PCI2019-111933-2), the European Union’s Horizon 2020 (FET-Open project, Grant No. 863098), the Xunta de Galicia (No. ED431C 2020/22 and Centro Singular de Investigación de Galicia accreditation 2019-2022, ED431G 2019/03) and the European Union (European Regional Development Fund-ERDF, is gratefully acknowledged. The authors thank the Centro de Supercomputación de Galicia (CESGA) for generous allocation of computer time. I.P. thanks Xunta de Galicia and the European Union (European Social Fund, ESF) for the award of a predoctoral fellowshipS

    Microscopic visualization of porous nanographenes synthesized through a combination of solution and on-surfacechemistry

    No full text
    On-surface synthesis has recently been regarded as a promising approach for the generation of new molecular structures. It has been particularly successful in the synthesis of graphene nanoribbons, nanographenes and intrinsically reactive and instable, yet attractive species. It is based on the combination of solution chemistry aimed at preparation of appropriate molecular precursors for further ultra-high vacuum surface assisted transformations. This approach also owes its success to an incredible development of characterization techniques, such as scanning tunneling/atomic force microscopy and related methods, which allow detailed, local characterization at atomic scale. While the surface-assisted synthesis can provide molecular nanostructures with outstanding precision, down to single atoms, it suffers from basing on metallic surfaces and often limited yield. Therefore, the extension of the approach away from metals and the struggle to increase productivity seem to be significant challenges toward wider applications. Herein, we demonstrate the on-surface synthesis approach for generation of non-planar nanographenes, which are synthesized through a combination of solution chemistry and sequential surface-assisted processes, together with the detailed characterization by scanning probe microscopy methods

    Magnetism of Topological Boundary States Induced by Boron Substitution in Graphene Nanoribbons

    No full text
    OPEN DATA related to the research publication: Niklas Friedrich, Pedro Brandimarte, Jingcheng Li, Shohei Saito, Shigehiro Yamaguchi, Iago Pozo, Diego Peña, Thomas Frederiksen, Aran Garcia-Lekue, Daniel Sánchez-Portal, and José Ignacio Pascual, Magnetism of Topological Boundary States Induced by Boron Substitution in Graphene Nanoribbons, Phys. Rev. Lett. 125, 146801 (2020) [arXiv:2004.10280]Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.We acknowledge funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863098 (FET-Open project "SPRING").Peer reviewe

    Synthesis and reactivity of a trigonal porous nanographene on a gold surface

    No full text
    The synthesis of porous nanographenes is a challenging task for solution chemistry, and thus, on-surface synthesis provides an alternative approach. Here, we report the synthesis of a triporous nanographene with 102 sp2 carbon atoms by combining solution and surface chemistry. The carbon skeleton was obtained by Pd-catalyzed cyclotrimerization of arynes in solution, while planarization of the molecule was achieved through two hierarchically organized on-surface cyclodehydrogenation reactions, intra- and inter-blade. Remarkably, the three non-planar [14]annulene pores of this nanographene further evolved at higher temperatures showing interesting intra-porous on-surface reactivityWe acknowledge financial support from the National Science Center, Poland (2017/26/E/ST3/00855), Agencia Estatal de Investigación (MAT2016-78293-C6-3-R and CTQ2016-78157-R), Xunta de Galicia (Centro singular de investigación de Galicia, accreditation 2016–2019, ED431G/09) and Fondo Europeo de Desarrollo Regional (FEDER). IP thanks Xunta de Galicia and the European Union (European Social Fund, ESF) for awarding a pre-doctoral fellowshipS

    Addressing electron spins embedded in metallic graphene nanoribbons

    No full text
    Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by onsurface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state’s and the valence band’s wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architecturesWe gratefully acknowledge financial support from Grants PID2019-107338RB-C61, PID2019-107338RB-C62, PID2019-107338RB-C66, PID2019-110037GB-I00, and PCI2019-111933-2 and the Maria de Maeztu Units of Excellence Program CEX2020-001038-M funded by MCIN/AEI/10.13039/501100011033, the European Regional Development Fund, the European Union (EU) H2020 program through the FET Open project SPRING (Grant Agreement No. 863098), the Xunta de Galicia (Centro de Investigación de Galicia accreditation 2019–2022, ED431G 2019/03), the Dpto. Educación Gobierno Vasco (Grant Nos. PIBA-2020-1-0014, IT1246-19, and IT-1569-22) and the Programa Red Guipuzcoana de Ciencia, Tecnología e Innovación 2021 (Grant No. 2021-CIEN-000070-01. Gipuzkoa Next)S
    corecore