1,363 research outputs found

    Entangling power of baker's map: Role of symmetries

    Full text link
    The quantum baker map possesses two symmetries: a canonical "spatial" symmetry, and a time-reversal symmetry. We show that, even when these features are taken into account, the asymptotic entangling power of the baker's map does not always agree with the predictions of random matrix theory. We have verified that the dimension of the Hilbert space is the crucial parameter which determines whether the entangling properties of the baker are universal or not. For power-of-two dimensions, i.e., qubit systems, an anomalous entangling power is observed; otherwise the behavior of the baker is consistent with random matrix theories. We also derive a general formula that relates the asymptotic entangling power of an arbitrary unitary with properties of its reduced eigenvectors.Comment: 5 page

    Matrix Element Distribution as a Signature of Entanglement Generation

    Full text link
    We explore connections between an operator's matrix element distribution and its entanglement generation. Operators with matrix element distributions similar to those of random matrices generate states of high multi-partite entanglement. This occurs even when other statistical properties of the operators do not conincide with random matrices. Similarly, operators with some statistical properties of random matrices may not exhibit random matrix element distributions and will not produce states with high levels of multi-partite entanglement. Finally, we show that operators with similar matrix element distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes quant-ph/0405053, expands quant-ph/050211

    Towards the Data Processing Boards for CBM experiment

    Get PDF

    Mycobacterial immune reconstitution inflammatory syndrome in HIV-1 infection after antiretroviral therapy is associated with deregulated specific T-cell responses: Beneficial effect of IL-2 and GM-CSF immunotherapy

    Get PDF
    BACKGROUND: With the advent of antiretroviral therapy (ART) cases of immune reconstitution inflammatory syndrome (IRIS) have increasingly been reported. IRIS usually occurs in individuals with a rapidly rising CD4 T-cell count or percentage upon initiation of ART, who develop a deregulated immune response to infection with or without reactivation of opportunistic organisms. Here, we evaluated rises in absolute CD4 T-cells, and specific CD4 T-cell responses in 4 HIV-1(+ )individuals presenting with mycobacterial associated IRIS who received in conjunction with ART, IL-2 plus GM-CSF immunotherapy. METHODS: We assessed CD4 T-cell counts, HIV-1 RNA loads, phenotype for naïve and activation markers, and in vitro proliferative responses. Results were compared with those observed in 11 matched, successfully treated asymptomatic clinical progressors (CP) with no evidence of opportunistic infections, and uninfected controls. RESULTS: Median CD4 T-cell counts in IRIS patients rose from 22 cells/μl before initiation of ART, to 70 cells/μl after 8 months of therapy (median 6.5 fold increase). This coincided with IRIS diagnosis, lower levels of naïve CD4 T-cells, increased expression of immune activation markers, and weak CD4 T-cell responses. In contrast, CP had a median CD4 T-cell counts of 76 cells/μl at baseline, which rose to 249 cells/μl 6 months post ART, when strong T-cell responses were seen in > 80% of patients. Higher levels of expression of immune activation markers were seen in IRIS patients compared to CP and UC (IRIS > CP > UC). Immunotherapy with IL-2 and GM-CSF paralleled clinical recovery. CONCLUSION: These data suggest that mycobacterial IRIS is associated with inadequate immune reconstitution rather than vigorous specific T-cell responses, and concomitant administration of IL-2 and GM-CSF immunotherapy with effective ART may correct/augment T-cell immunity in such setting resulting in clinical benefit

    Latent tuberculosis infection screening and treatment in HIV: insights from evaluation of UK practice

    Get PDF
    Latent TB infection (LTBI) screening and treatment in HIV-positive individuals in the UK is advocated by the British HIV Association (BHIVA) and National Institute for Health and Care Excellence (NICE), although each recommends differing strategies. We undertook an evaluation of UK practice, relating the responses to the local HIV/TB disease burden. 162 of 188 (86%) UK geographical areas responded; only 93/162 (57.4%) offer LTBI testing with considerable heterogeneity in practice, and no difference in HIV/TB burden between areas offering testing and those who do not. Only 33/93 (35.5%) and 6/93 (6.5%) reported full compliance with BHIVA and NICE guidance respectively. A uniform national guideline is required

    The statistics of the entanglement changes generated by the Hadamard-CNOT quantum circuit

    Get PDF
    We consider the change of entanglement of formation ΔE\Delta E produced by the Hadamard-CNOT circuit on a general (pure or mixed) state ρ\rho describing a system of two qubits. We study numerically the probabilities of obtaining different values of ΔE\Delta E, assuming that the initial state is randomly distributed in the space of all states according to the product measure recently introduced by Zyczkowski {\it et al.} [Phys. Rev. A {\bf 58} (1998) 883].Comment: 12 pages, 2 figure

    Conditional q-Entropies and Quantum Separability: A Numerical Exploration

    Full text link
    We revisit the relationship between quantum separability and the sign of the relative q-entropies of composite quantum systems. The q-entropies depend on the density matrix eigenvalues p_i through the quantity omega_q = sum_i p_i^q. Renyi's and Tsallis' measures constitute particular instances of these entropies. We perform a systematic numerical survey of the space of mixed states of two-qubit systems in order to determine, as a function of the degree of mixture, and for different values of the entropic parameter q, the volume in state space occupied by those states characterized by positive values of the relative entropy. Similar calculations are performed for qubit-qutrit systems and for composite systems described by Hilbert spaces of larger dimensionality. We pay particular attention to the limit case q --> infinity. Our numerical results indicate that, as the dimensionalities of both subsystems increase, composite quantum systems tend, as far as their relative q-entropies are concerned, to behave in a classical way

    Entanglement Distribution and Entangling Power of Quantum Gates

    Get PDF
    Quantum gates, that play a fundamental role in quantum computation and other quantum information processes, are unitary evolution operators U^\hat U that act on a composite system changing its entanglement. In the present contribution we study some aspects of these entanglement changes. By recourse of a Monte Carlo procedure, we compute the so called "entangling power" for several paradigmatic quantum gates and discuss results concerning the action of the CNOT gate. We pay special attention to the distribution of entanglement among the several parties involved
    corecore