27 research outputs found

    Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn(−/−);SMN2(tg/0);SMN1(SC)). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms

    Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Get PDF
    We would like to thank Lucas Fraga who helped with primer design and Alison Thomson for tissue collection. We would also like to acknowledge the Microscopy and Histology Core Facility at the University of Aberdeen for the use of their facilities. SHP is funded by Anatomical Society, Euan MacDonald Centre for Motor Neurone Disease Research and an Elphinstone Scholarship for ES from the University of Aberdeen. THG is funded by SMA Trust (UK SMA Research Consortium award), Muscular Dystrophy UK, and Anatomical Society (PhD Studentship). FM is funded by Medical Research Council, SMA-Europe and the National Institute for Health Research Biomedical Research Centre and Great Ormond Street Hospital Children’s Charity. HZ is funded by SMA-Europe and the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. Corrigendum: Survival Motor Neuron (SMN) protein is required for normal mouse liver development Published online: 10 November 2016 DOI: 10.1038/srep35898Peer reviewedPublisher PDFOthe

    Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

    Get PDF
    Acknowledgments Blood biochemistry analysis and serum analysis were performed by the Easter Bush Pathology Department, University of Edinburgh. Animal husbandry was performed by Centre for Integrative Physiology bio-research restructure technical staff, University of Edinburgh. Assistance with intravenous injections was provided by Ian Coldicott (University of Sheffield) and Hannah Shorrock (University of Edinburgh). Human blood cDNA was a gift to GH from Kathy Evans, University of Edinburgh. Imaging was performed at the IMPACT imaging facility, University of Edinburgh, with technical assistance from Anisha Kubasik-Thayil. The authors would also like to thank Lyndsay Murray for technical discussions relating to qRT-PCR analysis. This work was supported by funding from the SMA Trust and the Anatomical Society (via grants to THG); the Euan MacDonald Centre for Motor Neurone Disease Research (via grants to THG and SHP); the Wellcome Trust (via grants to EJNG and THG); Muscular Dystrophy UK (via grants to THG and CGB); a Elphinstone Scholarship from the University of Aberdeen (to SHP); and The French Muscular Dystrophy Association (via grants to CM and JC).Peer reviewedPublisher PD

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Microarray analysis of differentially vulnerable motor neuron pools reveals fundamental differences in their basal molecular composition.

    No full text
    <p>(A) Schematic illustration of experimental design (TA, tibialis anterior; EDL, extensor digitorum longus; GS, gastrocnemius; Vul, vulnerable MNs, Res, resistant MNs; Int, intermediate phenotype MNs). (B) Volcano plots of differentially expressed transcripts in resistant compared to vulnerable MN pools, intermediate compared to vulnerable MN pools, and resistant compared to intermediate MN pools. (C) Ratio trending analysis: transcripts that were significantly changed (p<0.05) between resistant (EDL) and vulnerable (TA) groups with a differential trending value in the intermediate (GS) group were first identified after which the data set underwent enrichment analysis to reveal enriched biological pathways. Graph shows an example of genes in one enriched biological pathway (mitochondrial electron transport chain genes). Note that transcripts showed highest expression levels in resistant (EDL) neurons, with a decreasing level of expression as the vulnerability status of the groups increased (GS through to TA). (D) qPCR validation for 3 distinct mitochondrial genes confirming up-regulation in disease-resistant MN pools (N = 3), Unpaired two tailed student <i>t-test</i> (* P<0.05). (E) Bar chart (mean & s.e.m.) showing a reduction in ATP in the spinal cord of early and late-symptomatic SMA mice compared to littermate controls using an ATP assay (N = 3 spinal cords per genotype).</p

    Pgk1 expression is pathologically relevant in mouse and zebrafish models of SMA.

    No full text
    <p>(A) Expression of PGK1 protein in the spinal cord, skeletal muscle, sciatic nerve and heart of late-symptomatic P8 SMA mice. Protein levels were quantified and normalized to an appropriate loading control. (B) Bar chart (mean & s.e.m.) showing a significant reduction in PGK1 protein levels in SMA mouse spinal cord and sciatic nerve. N = 6 SPC per genotype. N = 3 muscle per genotype. N = 7 sciatic nerves per genotype. N = 3 hearts per genotype (C) Knockdown of Pgk1 in zebrafish induced an axonal outgrowth phenotype (middle panel arrow) similar to smn knockdown (arrow bottom panel) and also produced swellings in the tips of outgrowing axons indicative of axonal transport deficiencies. Scale bars = 50 ÎŒM (D) Quantification of axonal outgrowths showed a significant increase in truncated motor axons in pgk1 and smn morphants compared to controls. (E) Efficiency of <i>pgk1</i> knockdown in embryos was shown by western blot embryos normalized to an appropriate loading control (N = 3 per group, batches of 30 pooled zebrafish embryos per lane). N = 20 embryos per group. Unpaired two-tailed students <i>t-test</i> * p<0.05, ** p<0.01 *** p<0.001 **** p<0.0001.</p

    PGK1 is enriched in disease-resistant motor neuron pools, expressed in neuronal cells cellular and axonal compartments <i>in vivo</i> and <i>in vitro</i>.

    No full text
    <p>(A) Gene expression profile graph showing transcripts trending across differentially vulnerable motor neuron pools, with PGK1 highlighted. Note that <i>Pgk1</i> was 5-fold higher expressed in the EDL disease-resistant motor neuron pool compared to the TA vulnerable motor neuron pool, with expression levels trending through the GS intermediate pool. (B) Representative confocal micrographs showing expression of PGK1 in the cytoplasm of motor neurons (MN) in mouse spinal cord. Scale bars = 20 ÎŒM. (C) Expression of PGK1 was also detected in the majority of axons in the sciatic nerve (SN), being localised alongside neurofilament (H-NF; upper panels) but not co-localising with glial S100 label (lower panels). Scale bars = 5 ÎŒM (D) <i>In vitro</i> analysis showed expression of PGK1 in the cell body and axonal processes of mouse cortical neurons (CtxN). Scale bars = 30 ÎŒM. (E) Expression of pgk1 was detected in the axonal nerve terminals of mouse cortical neurons (CtxN). Scale bars = 15 ÎŒM. (F) Expression of PGK1 was also found in mouse primary motor neuron (MN) cell bodies and axonal compartments (arrow). Scale bars = 30 ÎŒM. (G) Expression of Pgk1 in the axonal terminals/growth cones (arrow) of mouse primary motor neurons (MN). Scale bars = 15 ÎŒM.</p

    Summary model showing ATP-generating pathways likely to influence the vulnerability status of MNs in SMA.

    No full text
    <p>Efficient ATP generation through different processes maintains levels in energy demanding MNs, critical for their function and survival during disease. Certain motor neuron pools possess inherently higher bioenergetic capacities that provide protection during cellular insult both at the cell body and at the NMJ. Efficient ATP generated from mitochondria allows cellular homeostasis to be maintained. During hypoxia, glycolytic pathways are employed to meet acute ATP demand, particularly at the NMJ, critical for vesicular recycling and synaptic transmission. Mitochondrial transport along the axon provides local ATP to maintain axonal integrity. Glycolytic machinery present along the axon allows for fast vesicular transport down to the NMJ to deliver packaged proteins for pre-synaptic function.</p
    corecore