362 research outputs found

    Developing Integrated Clinical Pathways for the Management of Clinically Severe Adult Obesity: a Critique of NHS England Policy

    Get PDF
    Purpose of the Review: Pathways for obesity prevention and treatment are well documented, yet the prevalence of obesity is rising, and access to treatment (including bariatric surgery) is limited. This review seeks to assess the current integrated clinical pathway for obesity management in England and determine the major challenges. Recent Findings: Evidence for tier 2 (community-based lifestyle intervention) and tier 3 (specialist weight management services) is limited, and how it facilitates care and improve outcomes in tier 4 remains uncertain. Treatment access, rigidity in pathways, uncertain treatment outcomes and weight stigma seems to be major barriers to improved care. Summary: More emphasis must be placed on access to effective treatments, treatment flexibility, addressing stigma and ensuring treatment efficacy including long-term health outcomes. Prevention and treatment should both receive significant focus though should be considered to be largely separate pathways. A simplified system for weight management is needed to allow flexibility and the delivery of personalized care including post-bariatric surgery care for those who need it

    SMOTEC: An Edge Computing Testbed for Adaptive Smart Mobility Experimentation

    Get PDF
    Smart mobility becomes paramount for meeting net-zero targets. However, autonomous, self-driving and electric vehicles require more than ever before an efficient, resilient and trustworthy computational offloading backbone that expands throughout the edge-to-cloud continuum. Utilizing on-demand heterogeneous computational resources for smart mobility is challenging and often cost-ineffective. This paper introduces SMOTEC, a novel open-source testbed for adaptive smart mobility experimentation with edge computing. SMOTEC provides for the first time a modular end-to-end instrumentation for prototyping and optimizing placement of intelligence services on edge devices such as augmented reality and real-time traffic monitoring. SMOTEC supports a plug-and-play Docker container integration of the SUMO simulator for urban mobility, Raspberry Pi edge devices communicating via ZeroMQ and EPOS for an AI-based decentralized load balancing across edge-to-cloud. All components are orchestrated by the K3s lightweight Kubernetes. A proof-of-concept of self-optimized service placements for traffic monitoring from Munich demonstrates in practice the applicability and cost-effectiveness of SMOTEC

    Exploring colistin pharmacodynamics against Klebsiella pneumoniae: A need to revise current susceptibility breakpoints

    Get PDF
    Objectives: Because the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of colistin against Enterobacteriaceae are not well explored, we studied the activity of colistin against K. pneumoniae in an in vitro PK/PD model simulating different dosing regimens. Methods: Three clinical isolates of K. pneumoniae with MICs of 0.5, 1 and 4mg/L were tested in an in vitro PK/PD model following a dose-fractionation design over a period of 24h. A high and low inoculumof 107 and 104 cfu/mL with and without a heteroresistant subpopulation, respectively, were used. PK/PD indices associated with colistin activity were explored and Monte Carlo analysis was performed in order to determine the PTA for achieving a bactericidal effect (2 log kill). Results: The fAUC/MIC (R2"0.64-0.68) followed by fCmax/MIC (R2=0.55-0.63) best described colistin's 24 h log10 cfu/mL reduction for both low and high inocula. Dosing regimens with fCmax/MIC≥6 were always associated with a bactericidal effect (P=0.0025). However, at clinically achievable concentrations, usually below fCmax/MIC=6, an fAUC/MIC ≤25 was more predictive of a bactericidal effect. Using a dosing regimen of 9 MU/ day, the PTA for this pharmacodynamic target was 100%, 5%-70%and 0%, for isolates with MICs of ≤0.5, 1 and ≥2 mg/L, respectively. Dosing regimens that aim for a trough level of 1 mg/L achieve coverage of strains up to 0.5 mg/L (target trough/MIC=2 mg/L). Conclusions: Characterization of the pharmacodynamics of colistin against Enterobacteriaceae in an in vitro model of infection indicates that a revision of current susceptibility breakpoints is needed. Therapeutic drug monitoring of colistin to achieve pharmacodynamic targets in individual patients is highly recommended

    Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk:a Mendelian randomization analysis

    Get PDF
    Endometrial cancer is the most common gynaecological cancer in high-income countries. Elevated body mass index (BMI) is an established modifiable risk factor for this condition and is estimated to confer a larger effect on endometrial cancer risk than any other cancer site. However, the molecular mechanisms underpinning this association remain unclear. We used Mendelian randomization (MR) to evaluate the causal role of 14 molecular risk factors (hormonal, metabolic and inflammatory markers) in endometrial cancer risk. We then evaluated and quantified the potential mediating role of these molecular traits in the relationship between BMI and endometrial cancer using multivariable MR. Methods Genetic instruments to proxy 14 molecular risk factors and BMI were constructed by identifying single-nucleotide polymorphisms (SNPs) reliably associated (P < 5.0 × 10−8) with each respective risk factor in previous genome-wide association studies (GWAS). Summary statistics for the association of these SNPs with overall and subtype-specific endometrial cancer risk (12,906 cases and 108,979 controls) were obtained from a GWAS meta-analysis of the Endometrial Cancer Association Consortium (ECAC), Epidemiology of Endometrial Cancer Consortium (E2C2) and UK Biobank. SNPs were combined into multi-allelic models and odds ratios (ORs) and 95% confidence intervals (95% CIs) were generated using inverse-variance weighted random-effects models. The mediating roles of the molecular risk factors in the relationship between BMI and endometrial cancer were then estimated using multivariable MR

    Recommendations for accurate genotyping of SARS-CoV-2 using amplicon-based sequencing of clinical samples.

    Get PDF
    Genotyping of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in monitoring viral evolution and transmission during the pandemic. The quality of the sequence data obtained from these genotyping efforts depends on several factors, including the quantity/integrity of the input material, the technology, and laboratory-specific implementation. The current lack of guidelines for SARS-CoV-2 genotyping leads to inclusion of error-containing genome sequences in genomic epidemiology studies. We aimed to establish clear and broadly applicable recommendations for reliable virus genotyping. We established and used a sequencing data analysis workflow that reliably identifies and removes technical artefacts; such artefacts can result in miscalls when using alternative pipelines to process clinical samples and synthetic viral genomes with an amplicon-based genotyping approach. We evaluated the impact of experimental factors, including viral load and sequencing depth, on correct sequence determination. We found that at least 1000 viral genomes are necessary to confidently detect variants in the SARS-CoV-2 genome at frequencies of ≥10%. The broad applicability of our recommendations was validated in over 200 clinical samples from six independent laboratories. The genotypes we determined for clinical isolates with sufficient quality cluster by sampling location and period. Our analysis also supports the rise in frequencies of 20A.EU1 and 20A.EU2, two recently reported European strains whose dissemination was facilitated by travel during the summer of 2020. We present much-needed recommendations for the reliable determination of SARS-CoV-2 genome sequences and demonstrate their broad applicability in a large cohort of clinical samples

    Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery?

    Get PDF
    The number of bariatric surgical procedures performed has increased dramatically. This review discusses the clinical and physiological changes, and in particular, the mechanisms behind weight loss and glycaemic improvements, observed following the gastric bypass, sleeve gastrectomy and gastric banding bariatric procedures. The review then examines how close we are to mimicking the clinical or physiological effects of surgery through less invasive and safer modern interventions that are currently available for clinical use. These include dietary interventions, orlistat, lorcaserin, phentermine/topiramate, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, pramlintide, dapagliflozin, the duodenal–jejunal bypass liner, gastric pacemakers and gastric balloons. We conclude that, based on the most recent trials, we cannot fully mimic the clinical or physiological effects of surgery; however, we are getting closer. A ‘medical bypass' may not be as far in the future as we previously thought, as the physician's armamentarium against obesity and type 2 diabetes has recently got stronger through the use of specific dietary modifications, novel medical devices and pharmacotherapy. Novel therapeutic targets include not only appetite but also taste/food preferences, energy expenditure, gut microbiota, bile acid signalling, inflammation, preservation of β-cell function and hepatic glucose output, among others. Although there are no magic bullets, an integrated multimodal approach may yield success. Non-surgical interventions that mimic the metabolic benefits of bariatric surgery, with a reduced morbidity and mortality burden, remain tenable alternatives for patients and health-care professionals

    Democracy by Design: Perspectives for Digitally Assisted, Participatory Upgrades of Society

    Get PDF
    The technological revolution, particularly the availability of more data and more powerful computational tools, has led to the emergence of a new scientific field called “Computational Diplomacy”. Our work tries to define its scope and focuses on a popular subarea of it, namely “Digital Democracy”. In recent years, there has been a surge of interest in using digital technologies to promote more participatory forms of democracy. While there are numerous potential benefits to using digital tools to enhance democracy, significant challenges must be addressed. It is essential to ensure that digital technologies are used in an accessible, equitable, and fair manner rather than reinforcing existing power imbalances. This paper investigates how digital tools can be used to help design more democratic societies by investigating three key research areas: (1) the role of digital technologies for facilitating civic engagement in collective decision-making; (2) the use of digital tools to improve transparency and accountability in governance; and (3) the potential for digital technologies to enable the formation of more inclusive and representative democracies. We argue that more research on how digital technologies can be used to support democracy upgrade is needed. Along these lines, we lay out a research agenda for the future
    corecore