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Abstract 

Background: Endometrial cancer is the most common gynaecological cancer in high-income countries. Elevated 
body mass index (BMI) is an established modifiable risk factor for this condition and is estimated to confer a larger 
effect on endometrial cancer risk than any other cancer site. However, the molecular mechanisms underpinning this 
association remain unclear. We used Mendelian randomization (MR) to evaluate the causal role of 14 molecular risk 
factors (hormonal, metabolic and inflammatory markers) in endometrial cancer risk. We then evaluated and quantified 
the potential mediating role of these molecular traits in the relationship between BMI and endometrial cancer using 
multivariable MR.

Methods: Genetic instruments to proxy 14 molecular risk factors and BMI were constructed by identifying single-
nucleotide polymorphisms (SNPs) reliably associated (P < 5.0 ×  10−8) with each respective risk factor in previous 
genome-wide association studies (GWAS). Summary statistics for the association of these SNPs with overall and 
subtype-specific endometrial cancer risk (12,906 cases and 108,979 controls) were obtained from a GWAS meta-
analysis of the Endometrial Cancer Association Consortium (ECAC), Epidemiology of Endometrial Cancer Consortium 
(E2C2) and UK Biobank. SNPs were combined into multi-allelic models and odds ratios (ORs) and 95% confidence 
intervals (95% CIs) were generated using inverse-variance weighted random-effects models. The mediating roles of 
the molecular risk factors in the relationship between BMI and endometrial cancer were then estimated using multi-
variable MR.

Results: In MR analyses, there was strong evidence that BMI (OR per standard deviation (SD) increase 1.88, 95% CI 
1.69 to 2.09, P = 3.87 ×  10−31), total testosterone (OR per inverse-normal transformed nmol/L increase 1.64, 95% CI 
1.43 to 1.88, P = 1.71 ×  10−12), bioavailable testosterone (OR per natural log transformed nmol/L increase: 1.46, 95% 
CI 1.29 to 1.65, P = 3.48 ×  10−9), fasting insulin (OR per natural log transformed pmol/L increase: 3.93, 95% CI 2.29 to 
6.74, P = 7.18 ×  10−7) and sex hormone-binding globulin (SHBG, OR per inverse-normal transformed nmol/L increase 
0.71, 95% CI 0.59 to 0.85, P = 2.07 ×  10−4) had a causal effect on endometrial cancer risk. Additionally, there was sug-
gestive evidence that total serum cholesterol (OR per mg/dL increase 0.90, 95% CI 0.81 to 1.00, P = 4.01 ×  10−2) had 
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Background
Endometrial cancer is the most common gynaeco-
logical cancer in high-income countries and the sec-
ond most common globally [1, 2]. In 2020, there were 
417,367 new cases diagnosed and 97,370 endometrial 
cancer-related deaths worldwide [3]. In contrast to 
several other cancer types where incidence rates have 
been declining over the past two decades, the global 
incidence of endometrial cancer continues to increase 
[4–8].

Elevated body mass index (BMI) is an established risk 
factor for endometrial cancer and is estimated to confer 
a larger effect on risk of this malignancy than any other 
cancer type [9–11]. A recent meta-analysis of 30 prospec-
tive studies reported that each 5 kg/m2 increase in BMI 
was associated with a 54% (95% confidence interval (CI) 
47 to 61%) higher risk of endometrial cancer [12–14]. It is 
estimated that excess adiposity accounts for 34% of global 
endometrial cancer cases, with the increasing incidence 
of endometrial cancer mirroring rising levels of obesity 
worldwide [15–17]. Lifestyle and dietary interventions 
encouraging maintenance of a healthy weight there-
fore remain cornerstones for the primary prevention of 
endometrial cancer [9]. Alongside weight management 
strategies, greater characterization of the molecular 
mechanisms underpinning an effect of excess adiposity 
on endometrial cancer could provide a complementary 
approach to cancer prevention through the development 
of pharmacological interventions targeting these traits in 
high-risk groups.

Observational epidemiological studies have reported 
associations between several hormonal, metabolic 
and inflammatory factors linked to obesity and endo-
metrial cancer, including bioavailable testosterone, 
sex hormone-binding globulin (SHBG), oestradiol 
and fasting insulin [18–22]. However, conventional 
observational studies are susceptible to residual con-
founding (due to unmeasured or imprecisely meas-
ured confounders), reverse causation and other forms 
of bias which undermine robust causal inference. 

Therefore, the causal nature of these risk factors, and 
thus their suitability as effective intervention targets 
for endometrial cancer prevention, remains unclear.

Mendelian randomization (MR) is an analytical 
approach that uses germline genetic variants as instru-
ments for risk factors to evaluate the causal effects of 
these factors on disease outcomes in observational set-
tings [23, 24]. Since germline genetic variants are ran-
domly assorted at meiosis, MR analyses should be less 
prone to confounding by lifestyle and environmental 
factors than conventional observational studies. Fur-
thermore, since germline genetic variants are fixed at 
conception, MR analyses are not subject to reverse cau-
sation bias.

Recent MR studies have suggested potential causal 
relationships between circulating levels of several 
molecular traits, including low-density lipoprotein 
(LDL) cholesterol, insulin, total and bioavailable testos-
terone, and sex hormone-binding globulin (SHBG) and 
endometrial cancer risk, and have confirmed a causal 
role of BMI in endometrial cancer risk [17, 25–31]. 
However, many previously reported molecular risk fac-
tors for endometrial cancer from conventional obser-
vational studies remain untested in an MR framework, 
meaning the causal relevance of these factors in disease 
onset is unclear. Additionally, no MR studies to date 
have attempted to quantify the potential mediating role 
of these factors in the relationship between BMI and 
endometrial cancer risk.

Given the unclear causal relevance of previously 
reported molecular traits in endometrial cancer aetiol-
ogy, we used a two-sample MR approach to evaluate the 
causal role of 14 endogenous sex hormones, metabolic 
traits and inflammatory markers in endometrial cancer 
risk (overall and in endometrioid and non-endometri-
oid subtypes). We then used multivariable MR to evalu-
ate and quantify the mediating role of these molecular 
traits in the relationship between BMI and endometrial 
cancer risk.

an effect on endometrial cancer risk. In mediation analysis, we found evidence for a mediating role of fasting insulin 
(19% total effect mediated, 95% CI 5 to 34%, P = 9.17 ×  10−3), bioavailable testosterone (15% mediated, 95% CI 10 to 
20%, P = 1.43 ×  10−8) and SHBG (7% mediated, 95% CI 1 to 12%, P = 1.81 ×  10−2) in the relationship between BMI 
and endometrial cancer risk.

Conclusions: Our comprehensive MR analysis provides insight into potential causal mechanisms linking BMI with 
endometrial cancer risk and suggests targeting of insulinemic and hormonal traits as a potential strategy for the pre-
vention of endometrial cancer.

Keywords: Body mass index, Endometrial cancer, Mendelian randomization, Fasting insulin, Bioavailable 
testosterone, Sex hormone-binding globulin
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Methods
Our analytical strategy was as follows: first, we attempted 
to corroborate previous MR findings that there was evi-
dence of a causal relationship between BMI and endo-
metrial cancer risk (overall and by histological subtype); 
second, we examined evidence for a causal relationship 
between previously reported molecular factors and endo-
metrial cancer risk (overall and by histological subtype); 
third, we evaluated the causal relationship between BMI 
and molecular risk factors confirmed to influence endo-
metrial cancer risk (overall and by histological subtype); 
finally, we performed a mediation analysis to quantify the 
proportion of the total effect of BMI on endometrial can-
cer risk that was mediated by each identified trait.

Endometrial cancer study population
Summary genetic association data on overall and sub-
type-specific endometrial cancer risk were obtained from 
a genome-wide association study (GWAS) of 12,906 cases 
(including 8758 endometrioid and 1230 non-endometri-
oid endometrial cancer cases) and up to 108,979 controls 
of European ancestry [30]. This meta-GWAS combined 
17 previously reported studies from the Endometrial 
Cancer Association Consortium (ECAC), the Epidemiol-
ogy of Endometrial Cancer Consortium (E2C2) and UK 
Biobank, with four studies contributing samples to more 
than one genotyping project. Participants were recruited 
from Australia, Belgium, Germany, Poland, Sweden, 
the UK and the USA and associations were adjusted for 
principal components of ancestry. Genotyping was per-
formed using one of several Illumina arrays and impu-
tation was performed using the 1000 Genomes Phase 3 
reference panel [32]. Further information on this meta-
GWAS is provided in Additional file 1: Appendix S1.

Identification of previously reported molecular risk factors 
for endometrial cancer
We performed two pragmatic searches of the literature 
using PubMed. The first search identified previously pub-
lished MR analyses of molecular risk factors for endome-
trial cancer (Additional file 1: Appendix S2). The second 
identified narrative or systematic reviews of potential 
molecular mechanisms underpinning the relationship 
between obesity and endometrial cancer (additional 
information on search strategies is presented in Addi-
tional file  1: Appendix S3). Combined, these literature 
reviews identified 20 unique molecular traits which could 
mediate the effect of BMI on endometrial cancer risk, 
of which 14 had suitable genetic instruments available. 
These traits include nine metabolic factors (LDL choles-
terol, high-density lipoprotein (HDL) cholesterol, total 
serum cholesterol, triglycerides, blood glucose, fasting 
insulin, insulin-like growth factor 1 (IGF-1), adiponectin 

and leptin); three endogenous sex hormones or traits that 
regulate their bioactivity (total and bioavailable testoster-
one and SHBG); and two inflammatory markers (inter-
leukin-6 (IL-6) and C-reactive protein (CRP, measured 
as high-sensitivity CRP) (Fig.  1) [28, 33–40]. Summary 
genetic association data on BMI were obtained from a 
GWAS of 681,275 individuals of European ancestry [41]. 
Additional information on participant demographics and 
covariates included in adjustment strategies across each 
GWAS are presented in Additional file  1: Table  S4 [28, 
33, 35–37, 40–47] (Table 1).

Statistical analyses
MR analysis can generate unbiased estimates of causal 
effects of risk factors on disease outcomes if the follow-
ing assumptions are met: (i) the instrument strongly 
associates with the exposure (“relevance”), (ii) there is 
no confounding of the instrument-outcome relation-
ship (“exchangeability”) and (iii) the instrument only 
affects the outcome through the exposure (“exclusion 
restriction”) (Fig.  2) [48]. The statistical power and pre-
cision of MR analysis can be increased by employing a 
“two-sample MR” framework in which summary genetic 
association data from two independent samples—one 
representing genetic variant-exposure associations and 
one representing genetic variant-outcome associations—
are synthesized to estimate causal effects [49]. For esti-
mates derived from two-sample MR to be valid, however, 
samples used to obtain SNP-exposure and SNP-outcome 
associations must be representative of the same underly-
ing population (e.g. with respect to age, sex and ancestry) 
[50].

To construct genetic instruments for BMI and pre-
viously reported molecular risk factors, we obtained 
single-nucleotide polymorphisms (SNPs) reliably (P < 5 
×  10−8) and independently (r2 < 0.001) associated with 
each trait. To construct a genetic instrument for leptin, 
we restricted genetic variants to cis-acting SNPs (i.e. in or 
within ± 100 kb from the gene encoding the protein). For 
leptin, IL-6 and CRP analyses, SNPs were permitted to be 
in weak linkage disequilibrium (LD) (r2 < 0.10) to maxi-
mize instrument strength. For all traits where instru-
ments consisted of SNPs in weak LD (i.e. leptin, IL-6 and 
CRP), standard errors for causal estimates were inflated 
to account for correlation between SNPs with reference 
to the 1000 Genomes Phase 3 reference panel [32, 51]. 
Information on genetic instruments included as instru-
ments for traits is provided in Additional file 2: Table S5.

For traits instrumented by a single SNP, the Wald 
ratio was used to generate effect estimates and the delta 
method was used to approximate standard errors [52]. 
For traits instrumented by two or more SNPs, inverse-
variance weighted (IVW) random-effects models were 
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used to estimate causal effects [52]. A Bonferroni cor-
rection was applied as a heuristic to account for mul-
tiple testing in MR analyses for the 15 risk factors (14 
molecular traits and BMI) investigated. Results below 
this threshold were classified as “strong evidence” (P < 
3.33 ×  10−3 (0.05/15 traits)), whereas results between 
this threshold and P < 0.05 were classified as “suggestive 
evidence”.

When using genetic instruments, there is potential for 
horizontal pleiotropy –– when a genetic variant influ-
ences an outcome through a biological pathway inde-
pendent to the exposure, a violation of the “exclusion 
restriction” criterion [53]. We evaluated the presence of 
horizontal pleiotropy by performing various sensitivity 
analyses. First, for instruments consisting of ≥ 10 SNPs, 
we re-calculated causal estimates obtained from IVW 
models using MR-Egger regression, weighted median 
estimation and weighted mode estimation (additional 
information on sensitivity analyses is provided in Addi-
tional file 1: Appendix S1) [54–58]. Each of these models 

makes different assumptions regarding the nature of hor-
izontal pleiotropy in the genetic instrument and therefore 
performing all three can provide complementary support 
to IVW models in evaluating the presence of horizon-
tal pleiotropy. These models were not employed when 
instruments consisted of < 10 SNPs because of their 
reduced statistical power to detect horizontal pleiotropy 
in these settings. Second, we performed “leave-one-out” 
analyses for all findings showing strong or suggestive 
evidence of effects in IVW models (P < 0.05) for traits 
where instruments consisted of ≥ 10 SNPs and find-
ings were consistent across MR-Egger, weighted median 
and weighted mode sensitivity analyses or where instru-
ments consisted of < 10 SNPs. This approach sequentially 
removes each SNP from an instrument and then re-cal-
culates the overall effect estimate to examine robustness 
of findings to individual influential SNPs in IVW models.

Female-specific instruments (i.e. genome-wide signifi-
cant SNPs in female-specific GWAS) were used to proxy 
endogenous sex hormones (i.e. total and bioavailable 

Fig. 1 Flowchart detailing the process of identifying previously reported risk factors with suitable genetic instruments. TNF-α = tumour necrosis 
factor-α, IGFBP-1 = insulin-like growth factor-binding protein-1, LDL = low-density lipoprotein, HDL = high-density lipoprotein, IGF-1 = insulin-like 
growth factor-1, IL-6 = interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding globulin
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Table 1 Details of the instruments used for exposures

BMI is scaled to an SD increase (4.7 kg/m2). For the analysis involving the plasma proteome, due to the requirement of increased statistical power in order to overcome 
the multiple testing burden, alternative summary genetic association data for BMI were obtained from a genome-wide association study of 681,275 individuals of 
European ancestry (note that this summary genetic data could not be used for other analyses due to substantial overlap of participants with summary genetic data 
of other traits) [41]. The CRP GWAS included some individuals of non-European ancestry and adjusted for ancestry where applicable. BMI body mass index, LDL low-
density lipoprotein, HDL high-density lipoprotein, IGF-1 insulin-like growth factor-1, IL-6 interleukin-6, CRP C-reactive protein, SHBG sex hormone-binding globulin, LD 
linkage disequilibrium. For instrument construction of IGF-1 (cis and trans variants), a P value of 5 ×  10−6 was used

Exposure GWAS Sample size Number 
of SNPs

R2 F-statistic Sex specificity

Adult BMI Yengo et al. [41] 681,275 507 0.078 57,847 Combined

LDL cholesterol Willer et al. [33] 188,577 81 0.182 15,002 Combined

HDL cholesterol Willer et al. [33] 188,577 89 0.055 10,978 Combined

Triglyceride Willer et al. [33] 188,577 55 0.052 9811 Combined

Total serum cholesterol Willer et al. [33] 188,577 88 0.063 12,696 Combined

Glucose Neale et al. [35] 361,194 109 0.036 11,776 Female

Fasting insulin (unadjusted for BMI) Lagou et al. [42] 98,210 14 0.005 523 Combined

Fasting insulin (adjusted for BMI) Chen et al. [43] 150,571 14 0.006 865 Combined

IGF-1 (cis and trans variants) Sinnott-Armstrong et al. [36] 358,072 413 0.036 13,367 Combined

IGF-1 (cis variants) Larsson et al. [44] 358,072 1 0.002 814 Combined

IL-6 Georgakis et al. [37] 204,402 7 0.004 911 Combined

Adiponectin (cis and trans variants) Locke et al. [45] 14,172 3 0.023 328 Combined

Adiponectin (cis variants) Locke et al. [45] 14,172 3 0.023 334 Combined

Leptin Folkersen et al. [46] 30,931 1 0.001 34 Combined

CRP (cis and trans variants) Ligthart et al. [40] 204,402 45 0.035 7414 Combined

CRP (cis variants) C-Reactive Protein Coronary Heart Dis-
ease Genetics Collaboration (CCGC) [47]

105,476 4 0.010 1030 Combined

Total testosterone Ruth et al. [28] 230,454 131 0.052 10,103 Female

Bioavailable testosterone Ruth et al. [28] 188,507 147 0.054 10,599 Female

SHBG Ruth et al. [28] 189,473 215 0.122 26,286 Female

Fig. 2 DAG demonstrating the core assumptions of Mendelian randomization. DAG = directed acyclic diagram, G = genetic instrument, E = 
exposure, O = outcome, C = confounding factors. Arrows labelled 1, 2 and 3 represent the three core assumptions of MR: (1) the instrument 
strongly associates with the exposure (“relevance”); (2) there is no confounding of the instrument-outcome relationship (“exchangeability”); and (3) 
the instrument only affects the outcome through the exposure (“exclusion restriction”). MR uses genetic instruments to proxy exposures in order to 
strengthen causal inference in observational epidemiological settings. As these genetic instruments are randomly inherited at meiosis, they should 
not be affected by conventional confounding factors like environmental, lifestyle and behavioural traits. In addition, since germline genetic variants 
are fixed at conception and cannot be altered by subsequent exposures, they are not susceptible to reverse causation. Finally, germline genotype 
can be measured relatively precisely using modern genotyping technologies which minimizes measurement error. Collectively, these properties 
of germline genetic variants (along with technologies that measure them) permit MR analyses to minimize many of the sources of bias which can 
undermine robust causal inference in conventional observational epidemiological analyses
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testosterone) and SHBG. Instruments were derived from 
sex-combined GWAS for all other traits to maximize sta-
tistical power where there was limited evidence of sex 
specificity of SNP associations. As a sensitivity analysis, 
we also re-performed MR analyses using sex-specific 
instruments where possible. For BMI, all analyses with 
strong or suggestive evidence for an effect (P < 0.05) were 
repeated using genome-wide significant (P < 5.0 ×  10−8) 
variants identified in female-specific analyses. Likewise, 
for fasting insulin and CRP analyses, the effect estimates 
and standard errors of SNPs used to instrument these 
traits were replaced with female-specific values where 
there was previous evidence of sex specificity of asso-
ciations (trait-specific criteria for identifying sex-specific 
effects are presented in Additional file  1: Appendix S1). 
Findings from sex-specific sensitivity analyses are pre-
sented in Additional file 1: Tables S6-S9. Finally, Steiger 
filtering was performed across all analyses to identify and 
subsequently remove any SNPs which explained more 
variance in the outcome than the exposure (i.e. suggest-
ing misspecification of the causal direction between 
traits) [59]. Post hoc power calculations were performed 
for MR analyses examining (i) the effect of putative 
molecular mediators on endometrial cancer risk and (ii) 
the effect of BMI on all molecular mediators confirmed 
to have a causal role in endometrial cancer risk (Addi-
tional file 1: Table S10) [60].

Mediation analysis
For all molecular traits that were identified as being on 
the causal pathway between BMI and endometrial cancer 

risk, we used multivariable MR to generate estimates of 
the direct effect (i.e. the remaining effect of the exposure 
on the outcome when the effect of the candidate mediator 
on the outcome has been adjusted for) and indirect effect 
(i.e. the effect of the exposure on the outcome through 
the candidate mediator) using the product of coefficients 
method [61]. The proportion of the total effect of BMI on 
endometrial cancer risk (“proportion mediated”) that was 
mediated by each molecular trait was calculated using 
these estimates. For SHBG and bioavailable testosterone, 
conditional F-statistics were sufficiently high although 
as a sensitivity analysis different levels of genetic cor-
relation were investigated for their effect on the con-
ditional F-statistics of these instruments (Additional 
file  1: Table  S11). In the case of fasting insulin, due to 
weak instrument bias, several different approaches were 
employed to attempt to maximize conditional instrument 
strength (for further information on these analyses, see 
Additional file 1: Appendix S1, Table S12-S13). Standard 
errors for the proportion mediated were calculated using 
the delta method [62]. In addition, we aimed to perform 
additional mediation analyses combining all mediators 
into a single model to examine the extent to which these 
mediators influenced endometrial cancer independently 
or via shared biological pathways (presumed relation-
ships between BMI, fasting insulin, SHBG, bioavailable 
testosterone and endometrial cancer risk are presented in 
Fig. 3). When all putative mediators were combined into 
a single model with BMI, however, there was persistent 
weak instrument bias. Of various alternate approaches 
examined to minimize this bias, the restriction of models 

Fig. 3 DAG demonstrating the proposed causal interactions of BMI, SHBG, fasting insulin and bioavailable testosterone on endometrial cancer 
(overall and the endometrioid histological subtype). DAG = directed acyclic diagram, BMI = body mass index, SHBG = sex hormone-binding 
globulin. Red lines indicate a negative causal effect, green lines indicate a positive causal effect
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to pairs of mediators (without inclusion of BMI) was 
found to generate the largest conditional F-statistics for 
each mediator included in the model (for further infor-
mation on these analyses see Additional file 1: Appendix 
S1).

Sample overlap sensitivity analyses
There was moderate sample overlap (52.2–62.4%) across 
some analyses which can bias MR estimates toward the 
confounded observational estimate in the presence of 
weak instrument bias (Additional file 1: Table S15) [63]. 
This bias can be inflated by “Winner’s curse”, in which 
weights for genetic instruments are derived from dis-
covery samples that overlap with outcome samples. 
Instruments in this analysis were constructed from 
genome-wide significant variants (P < 5.0 ×  10−8) in 
order to minimize the possibility of weak instrument 
bias. In addition, sensitivity analyses were performed to 
evaluate the influence of sample overlap in three ways. 
First, for analyses examining the effect of blood glucose 
on endometrial cancer risk, we re-performed MR analy-
ses using alternate GWAS data for this trait where there 
was no sample overlap [64, 65]. Second, for analyses 
examining the effect of BMI on total testosterone, bio-
available testosterone, SHBG and endometrial cancer, we 
re-performed MR analyses using alternate GWAS data 
for BMI where there was no sample overlap [66]. Third, 
for analyses examining the effect of total testosterone, 
bioavailable testosterone, SHBG and IGF-1 on endome-
trial cancer (where suitable alternate GWAS data were 
not available), we re-constructed instruments for sex 
hormones using more conservative P value thresholds 
(P < 5.0 ×  10−9, P < 5.0 ×  10−10). Similarly, in mediation 
analysis, due to the presence of sample overlap and possi-
ble influence of Winner’s curse, for any trait with sample 
overlap in the same multivariable MR model, the analy-
sis was repeated with a more stringent P value (P < 5.0 × 
 10−9) used for instrument construction.

All statistical analyses were performed using R (Vienna, 
Austria) version 4.0.2. Additional information on statisti-
cal packages used across various analyses is presented in 
Additional file 1: Appendix S1 [67–70]. Reporting guide-
lines for MR studies set out in STROBE-MR were fol-
lowed (Additional file 3: Appendix S16) [71, 72].

Results
Evaluating the effect of BMI on endometrial cancer risk
In MR analyses, there was strong evidence for an effect 
of BMI on risk of overall endometrial cancer (odds ratio 
(OR) per standard deviation (SD) (4.7 kg/m2) increase in 
BMI: 1.88, 95% CI 1.69 to 2.09, P = 3.87 ×  10−31) (Fig. 4, 
Table  2). This finding was consistent across sensitivity 
analyses examining evidence of horizontal pleiotropy, 

including MR-Egger, weighted median and weighted 
mode models, in analyses using a female-specific BMI 
instrument, analyses exploring potential Winner’s curse 
bias in instrument construction, and the leave-one-out 
analysis (Additional file 1: Figure S17, Tables S6, S18-S19) 
[28, 36, 64, 66].

In subtype-stratified analyses, there was evidence to 
support an effect of BMI on risk of both endometrioid 
and non-endometrioid endometrial cancer (ORs per SD 
(4.7 kg/m2) increase in BMI 1.89, 95% CI 1.65 to 2.16, P 
= 1.67 ×  10−20 and 1.67, 95% CI 1.19 to 2.35, P = 3.03 × 
 10−3, respectively) (Fig.  4, Table 2). These findings were 
robust to sensitivity analyses for endometrioid endo-
metrial cancer; however, findings were less consistent 
for non-endometrioid endometrial cancer in sensitivity 
analyses using female-specific BMI instruments (Addi-
tional file  1: Figure S20-21, Tables S6, S18). Therefore, 
only overall and endometrioid endometrial cancer were 
included in follow-up analyses.

Evaluating the effect of previously reported molecular risk 
factors on endometrial cancer risk
There was strong evidence for an effect of total testos-
terone (OR per increase in inverse-normal transformed 
(INT) nmol/L total testosterone: 1.64, 95% CI 1.43 to 
1.88, P = 1.71 ×  10−12), bioavailable testosterone (OR per 
increase in natural log transformed nmol/L bioavailable 
testosterone 1.46, 95% CI 1.29 to 1.65, P = 3.48 ×  10−9), 
fasting insulin (OR per increase in natural log trans-
formed pmol/L fasting insulin 3.93, 95% CI 2.29 to 6.74, 
P = 7.18 ×  10−7) and SHBG (OR per increase in INT 
nmol/L SHBG 0.71, 95% CI 0.59 to 0.85, P = 2.07 ×  10−4) 
on endometrial cancer risk (Fig. 5; Table 3). In addition, 
there was suggestive evidence for an effect of total serum 
cholesterol (OR per increase in SD (41.7 mg/dL) total 
serum cholesterol 0.90, 95% CI 0.81 to 1.00, P = 4.01 × 
 10−2) on overall endometrial cancer risk. These findings 
were consistent across sensitivity analyses (Additional 
file 1: Figure S22-26, Tables S6-S7, S16, S27).

In subtype-stratified analyses, there was strong evi-
dence to support an effect of total testosterone (OR per 
increase in INT nmol/L total testosterone 1.60, 95% CI 
1.36 to 1.87, P = 8.70 ×  10−9), bioavailable testosterone 
(OR per increase in natural log transformed bioavailable 
testosterone 1.46, 95% CI 1.29 to 1.65, P = 3.48 ×  10−9), 
fasting insulin (OR per increase in natural log trans-
formed pmol/L fasting insulin 4.64, 95% CI 2.30 to 9.36, 
P = 1.84 ×  10−5) and SHBG (OR per increase in INT 
nmol/L SHBG 0.65, 95% CI 0.54 to 0.80, P = 3.31 ×  10−5) 
on endometrioid endometrial cancer risk (Fig. 5; Table 3). 
Findings were consistent across all sensitivity analyses 
(Additional file 1: Figure S28-31, Tables S18, S7).
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Evaluating the effect of BMI on previously reported 
molecular risk factors
There was evidence for an effect of BMI on fasting insu-
lin (change in natural log transformed fasting insulin 
0.17, 95% CI 0.15 to 0.19, P = 1.51 ×  10−74), SHBG 
(change in INT SHBG −0.17, 95% CI −0.19 to −0.16, 
P = 4.86 ×  10−125), bioavailable testosterone (change 
in natural log transformed bioavailable testosterone 
0.26, 95% CI 0.23 to 0.29, P = 9.97 ×  10−68), total tes-
tosterone (change in INT total testosterone 0.08, 95% 
CI 0.05 to 0.11, P = 9.04 ×  10−10) and CRP (change 
in ln-transformed CRP 0.35, 95% CI 0.32 to 0.38, P = 

2.67 ×  10−127) (Fig. 6; Table 4). The direction of effect 
was inconsistent when examining the effect of BMI on 
total testosterone using a weighted mode model, sug-
gesting the potential presence of horizontal pleiotropy. 
Although there was little evidence for a causal effect 
of BMI on total serum cholesterol in the IVW model, 
there was some evidence for an effect across all three 
MR sensitivity analysis models, suggesting that hori-
zontal pleiotropy may be biasing the IVW estimate 
toward the null. All other findings were consistent 
across the various sensitivity analyses (Additional file 1: 
Figure S32-36, Tables S6-S7).

Fig. 4 Mendelian randomization analysis of BMI on overall and subtype-specific endometrial cancer risk. Results of MR analyses examining the 
effect of adult BMI on risk of overall and subtype-specific endometrial cancer risk
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Mendelian randomization mediation analysis
There was evidence for a mediating role of bioavailable 
testosterone (15% mediated, 95% CI 10 to 20%, P = 1.43 
×  10−8), fasting insulin (11% of total effect mediated, 
95% CI 1 to 21%, P = 2.89 ×  10−2) and SHBG (7% medi-
ated, 95% CI 1 to 12%, P = 1.81 ×  10−2) in the relation-
ship between BMI and overall endometrial cancer risk 
(Table  5). There was also evidence for a mediating role 
of bioavailable testosterone (15% mediated, 95% CI 9 to 
22%, P = 2.15 ×  10−6) and fasting insulin (16% mediated, 
95% CI 1 to 21%, P = 2.89 ×  10−2) in the relationship 
between BMI and endometrioid endometrial cancer risk 
(Table  5). There was little evidence for a mediating role 
of SHBG in the relationship between sex-combined BMI 
and endometrioid endometrial cancer (2% mediated, 95% 
CI −9 to 14%, P = 6.87 ×  10−1). However, in the female-
specific BMI sensitivity analysis, there was strong evi-
dence for a mediating role of female-specific SHBG in the 
relationship between BMI and endometrioid endometrial 
cancer (8% mediated, 95% CI 3 to 13%, P = 3.38 ×  10−3). 
Other than this, findings were consistent across sex-
specific BMI, fasting insulin and CRP sensitivity analyses 
(Additional file 1: Tables S8-S9).

The conditional F-statistic for both fasting insulin (F = 
2) and BMI (F = 6) in the multivariable MR performed 
to evaluate the “proportion mediated” by fasting insulin 
was < 10, indicating that there may be weak instrument 
bias in these analyses (i.e. over- or underestimation of 
the “proportion mediated” by fasting insulin) (Additional 
file 1: Table S14) [73]. When re-performing the “propor-
tion mediated” analysis for fasting insulin using an alter-
native approach (i.e. using an alternative fasting insulin 
instrument with a larger sample size and limiting the 
number of SNPs included in the BMI instrument to the 
100 with the strongest evidence of association using an 

LD threshold r2 < 0.001), we found that fasting insulin 
mediated 19% (95% CI 5 to 34%, P = 9.17 ×  10−3) of the 
relationship between BMI and overall endometrial cancer 
risk and 21% (95% CI 5 to 38%, P = 1.17 ×  10−2) of the 
relationship between BMI and endometrioid endome-
trial cancer risk (Additional file 1: Table S37). These were 
consistent to sensitivity analyses examining the potential 
influence of Winner’s curse and the effect of limiting the 
number of SNPs included in the BMI instrument to 100 
(Additional file 1: Tables S19, S38). Results from previous 
attempts to evaluate the mediating role of fasting insulin 
which may have been influenced by weak instrument bias 
are also provided (Additional file 1: Tables S39-S40).

In mediation analyses combining pairs of mediators 
into a single model, the effect of fasting insulin on overall 
endometrial cancer risk attenuated (~40% log OR reduc-
tion) when SHBG (a presumed downstream mediator 
of fasting insulin) was included in the model (OR per 
increase in natural log transformed pmol/L fasting insu-
lin 2.28, 95% CI 1.34 to 3.86, P = 2.85 ×  10−3) (Additional 
file 1: Table S41). Results from previous attempts to eval-
uate the independent roles of traits in the development 
of endometrial cancer in analyses which may have been 
influenced by weak instrument bias are also provided 
(Additional file 1: Tables S42-S46). These were consistent 
to sensitivity analyses examining the potential influence 
of Winner’s curse (Additional file 1: Table S47). The effect 
of SHBG on overall endometrial cancer fully attenuated 
when bioavailable testosterone (a presumed downstream 
mediator of SHBG) was included in the model (OR per 
increase in INT nmol/L SHBG 1.08, 95% CI 0.86 to 1.36, 
P = 5.00 ×  10−1). The effect of fasting insulin on over-
all endometrial cancer strongly attenuated when bio-
available testosterone was included in the model (OR 
per increase in natural log transformed pmol/L fasting 

Table 2 Results of MR analyses examining the effect of BMI on endometrial cancer risk

ORs are shown per increase in SD (4.7 kg/m2) BMI. BMI body mass index, IVW inverse-variance weighted

Outcome Method OR (95% CI) P value

Overall endometrial cancer IVW 1.88 (1.69 to 2.09) 3.87 ×  10−31

Weighted median 1.89 (1.58 to 2.26) 5.18 ×  10−12

Weighted mode 1.82 (1.35 to 2.44) 9.88 ×  10−5

MR-Egger 2.03 (1.54 to 2.67) 8.41 ×  10−7

Endometrioid endometrial cancer IVW 1.89 (1.65 to 2.16) 1.67 ×  10−20

Weighted median 1.99 (1.60 to 2.46) 3.24 ×  10−10

Weighted mode 1.96 (1.42 to 2.69) 4.67 ×  10−5

MR-Egger 2.15 (1.52 to 3.03) 1.74 ×  10−5

Non-endometrioid endometrial cancer IVW 1.67 (1.19 to 2.35) 3.03 ×  10−3

Weighted median 2.29 (1.24 to 4.22) 8.24 ×  10−3

Weighted mode 1.89 (0.77 to 4.63) 1.63 ×  10−1

MR-Egger 2.25 (0.99 to 5.07) 5.28 ×  10−2
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insulin 1.22, 95% CI 0.48 to 3.11, P = 6.78 ×  10−1). This 
could reflect mediation of the effect of fasting insulin 
on endometrial cancer via bioavailable testosterone, or 
the presence of conditionally weak instruments in this 
model. This could result in over- or underestimation of 
the proportion of the effect of fasting insulin mediated by 
bioavailable testosterone.

Employing the same approach to the endometrioid 
histological subtype, we found the effect of fasting insu-
lin on endometrioid endometrial cancer did not mark-
edly change (~14% logOR reduction) when SHBG was 
included in the model (OR per increase in natural log 
transformed pmol/L fasting insulin 3.74, 95% CI 0.74 to 
19.01, P = 1.56 ×  10−1). However, the effect of SHBG on 

Fig. 5 Mendelian randomization analysis of total serum cholesterol, fasting insulin, total testosterone, bioavailable testosterone and sex 
hormone-binding globulin (SHBG) on overall and endometrioid endometrial cancer risk. LDL = low-density lipoprotein, HDL = high-density 
lipoprotein, IGF-1 = insulin-like growth factor-1, IL-6 = interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding globulin. A Results of 
MR analyses examining the effects of previously reported molecular risk factors on risk of overall endometrial cancer risk. B Results of MR analyses 
examining the effects of previously reported molecular risk factors on risk of endometrioid subtype endometrial cancer risk
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Table 3 Results of MR analyses examining effect of risk factors on endometrial cancer risk

Exposure Outcome Method OR (95% CI) P value

LDL cholesterol Overall endometrial cancer IVW 0.95 (0.87 to 1.04) 3.05 ×  10−1

Weighted median 0.92 (0.82 to 1.03) 1.31 ×  10−1

Weighted mode 0.91 (0.82 to 1.02) 9.54 ×  10−2

MR-Egger 0.90 (0.79 to 1.03) 1.35 ×  10−1

Endometrioid endometrial cancer IVW 0.98 (0.89 to 1.08) 6.70 ×  10−1

Weighted median 0.96 (0.84 to 1.10) 5.61 ×  10−1

Weighted mode 0.93 (0.83 to 1.06) 2.79 ×  10−1

MR-Egger 0.93 (0.81 to 1.07) 3.31 ×  10−1

HDL cholesterol Overall endometrial cancer IVW 1.09 (0.97 to 1.23) 1.48 ×  10−1

Weighted median 1.10 (0.96 to 1.26) 1.89 ×  10−1

Weighted mode 1.07 (0.94 to 1.23) 3.11 ×  10−1

MR-Egger 1.08 (0.86 to 1.35) 4.99 ×  10−1

Endometrioid endometrial cancer IVW 1.04 (0.90 to 1.19) 6.05 ×  10−1

Weighted median 0.99 (0.84 to 1.16) 8.76 ×  10−1

Weighted mode 1.03 (0.88 to 1.21) 7.23 ×  10−1

MR-Egger 0.92 (0.71 to 1.20) 5.61 ×  10−1

Triglyceride Overall endometrial cancer IVW 0.95 (0.84 to 1.06) 3.55 ×  10−1

Weighted median 0.87 (0.75 to 1.01) 7.75 ×  10−2

Weighted mode 0.91 (0.79 to 1.04) 1.61 ×  10−1

MR-Egger 0.83 (0.69 to 1.00) 6.03 ×  10−2

Endometrioid endometrial cancer IVW 0.95 (0.83 to 1.09) 4.65 ×  10−1

Weighted median 0.92 (0.78 to 1.08) 3.21 ×  10−1

Weighted mode 0.91 (0.77 to 1.08) 2.87 ×  10−1

MR-Egger 0.87 (0.70 to 1.07) 2.02 ×  10−1

Total serum cholesterol Overall endometrial cancer IVW 0.90 (0.81 to 1.00) 4.01 ×  10−2

Weighted median 0.80 (0.71 to 0.90) 2.08 ×  10−4

Weighted mode 0.82 (0.73 to 0.91) 5.97 ×  10−4

MR-Egger 0.84 (0.71 to 0.98) 3.09 ×  10−2

Endometrioid endometrial cancer IVW 0.91 (0.82 to 1.02) 9.31 ×  10−2

Weighted median 0.81 (0.71 to 0.93) 3.40 ×  10−3

Weighted mode 0.84 (0.74 to 0.97) 1.64 ×  10−2

MR-Egger 0.86 (0.72 to 1.01) 7.60 ×  10−2

Glucose Overall endometrial cancer IVW 0.95 (0.79 to 1.14) 5.64 ×  10−1

Weighted median 0.97 (0.80 to 1.17) 7.36 ×  10−1

Weighted mode 0.93 (0.78 to 1.11) 4.47 ×  10−1

MR-Egger 0.99 (0.73 to 1.34) 9.29 ×  10−1

Endometrioid endometrial cancer IVW 0.90 (0.73 to 1.11) 3.26 ×  10−1

Weighted median 0.98 (0.77 to 1.23) 8.31 ×  10−1

Weighted mode 0.98 (0.80 to 1.20) 8.29 ×  10−1

MR-Egger 0.94 (0.67 to 1.33) 7.39 ×  10−1

Fasting insulin Overall endometrial cancer IVW 3.93 (2.29 to 6.74) 7.18 ×  10−7

Weighted median 3.49 (1.60 to 7.62) 1.67 ×  10−3

Weighted mode 3.55 (0.85 to 14.78) 1.06 ×  10−1

MR-Egger 8.28 (0.67 to 102.10) 1.25 ×  10−1

Endometrioid endometrial cancer IVW 4.64 (2.30 to 9.36) 1.84 ×  10−5

Weighted median 3.93 (1.56 to 9.93) 3.80 ×  10−3

Weighted mode 3.28 (0.69 to 15.62) 1.61 ×  10−1

MR-Egger 21.59 (0.78 to 593.93) 9.66 ×  10−2
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Table 3 (continued)

Exposure Outcome Method OR (95% CI) P value

IGF-1 (cis and trans variants) Overall endometrial cancer IVW 0.93 (0.85 to 1.06) 2.60 ×  10−1

Weighted median 1.01 (0.85 to 1.20) 8.96 ×  10−1

Weighted mode 1.22 (0.89 to 1.67) 2.28 ×  10−1

MR-Egger 1.17 (0.85 to 1.60) 3.49 ×  10−1

Endometrioid endometrial cancer IVW 0.89 (0.77 to 1.03) 1.12 ×  10−1

Weighted median 1.03 (0.84 to 1.25) 8.06 ×  10−1

Weighted mode 1.32 (0.92 to 1.90) 1.30 ×  10−1

MR-Egger 1.22 (0.85 to 1.76) 2.75 ×  10−1

IGF-1 (cis variants) Overall endometrial cancer Wald ratio 1.20 (0.79 to 1.82) 3.92 ×  10−1

Endometrioid endometrial cancer Wald ratio 1.40 (0.85 to 2.28) 1.84 ×  10−1

IL-6 (scaled to natural log transformed 
mg/L change in CRP)

Overall endometrial cancer IVW 0.90 (0.66 to 1.21) 4.80 ×  10−1

Endometrioid endometrial cancer IVW 0.86 (0.60 to 1.23) 4.01 ×  10−1

Adiponectin (cis and trans variants) Overall endometrial cancer IVW 0.92 (0.79 to 1.08) 3.17 ×  10−1

Endometrioid endometrial cancer IVW 0.94 (0.78 to 1.13) 4.99 ×  10−1

Adiponectin (cis variants) Overall endometrial cancer IVW 0.95 (0.83 to 1.08) 3.94 ×  10−1

Endometrioid endometrial cancer IVW 1.00 (0.86 to 1.16) 9.92 ×  10−1

Leptin Overall endometrial cancer Wald Ratio 1.03 (0.68 to 1.54) 8.96 ×  10−1

Endometrioid endometrial cancer Wald Ratio 0.88 (0.54 to 1.42) 5.99 ×  10−1

CRP (cis and trans variants) Overall endometrial cancer IVW 1.07 (0.94 to 1.22) 3.03 ×  10−1

Weighted median 0.97 (0.84 to 1.12) 6.76 ×  10−1

Weighted mode 1.02 (0.91 to 1.14) 7.80 ×  10−1

MR-Egger 0.96 (0.80 to 1.16) 6.99 ×  10−1

Endometrioid endometrial cancer IVW 1.12 (0.96 to 1.30) 1.39 ×  10−1

Weighted median 1.03 (0.87 to 1.23) 6.92 ×  10−1

Weighted mode 1.04 (0.90 to 1.20) 6.34 ×  10−1

MR-Egger 0.97 (0.78 to 1.20) 7.69 ×  10−1

CRP (cis variants) Overall endometrial cancer IVW 0.98 (0.85 to 1.13) 7.52 ×  10−1

Endometrioid endometrial cancer IVW 0.98 (0.83 to 1.16) 8.02 ×  10−1

Total testosterone Overall endometrial cancer IVW 1.64 (1.43 to 1.88) 1.71 ×  10−12

Weighted median 1.67 (1.39 to 2.01) 3.95 ×  10−8

Weighted mode 1.74 (1.38 to 2.20) 8.33 ×  10−6

MR-Egger 1.81 (1.38 to 2.38) 4.17 ×  10−5

Endometrioid endometrial cancer IVW 1.60 (1.36 to 1.87) 8.70 ×  10−9

Weighted median 1.81 (1.45 to 2.26) 2.05 ×  10−7

Weighted mode 1.88 (1.42 to 2.48) 2.34 ×  10−5

MR-Egger 1.74 (1.26 to 2.41) 1.02 ×  10−3

Bioavailable testosterone Overall endometrial cancer IVW 1.46 (1.29 to 1.65) 3.48 ×  10−9

Weighted median 1.47 (1.20 to 1.82) 2.46 ×  10−4

Weighted mode 1.51 (1.19 to 1.93) 1.16 ×  10−3

MR-Egger 1.90 (1.46 to 2.47) 5.63 ×  10−6

Endometrioid endometrial cancer IVW 1.46 (1.26 to 1.69) 3.08 ×  10−7

Weighted median 1.42 (1.14 to 1.76) 1.97 ×  10−3

Weighted mode 1.60 (1.20 to 2.13) 1.59 ×  10−3

MR-Egger 1.79 (1.31 to 2.43) 3.08 ×  10−7
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endometrioid endometrial cancer fully attenuated when 
bioavailable testosterone was included in the model (OR 
per increase in INT nmol/L SHBG 1.16, 95% CI 0.81 to 
1.65, P = 4.12 ×  10−1). As with analyses of overall endo-
metrial cancer, the effect of fasting insulin on endometri-
oid endometrial cancer attenuated toward the null when 
fasting insulin and bioavailable testosterone were com-
bined into a single model (OR per increase in natural log 
transformed pmol/L fasting insulin 1.05, 95% CI 0.36 to 
3.03, P = 9.33 ×  10−1), potentially reflecting mediation 
via bioavailable testosterone or persistent weak instru-
ment bias in this model.

Discussion
Our systematic MR analysis of 14 previously reported 
molecular risk factors and BMI in 12,906 endometrial 
cancer cases and 108,979 controls provided evidence for 
roles of elevated BMI, fasting insulin, total and bioavail-
able testosterone and SHBG in risk of overall and endo-
metrioid endometrial cancer. In mediation analyses, we 
found evidence that fasting insulin, bioavailable testos-
terone concentrations and SHBG partially mediated the 
effect of BMI on overall endometrial cancer risk. When 
combining pairs of mediators together into a single 
model, we found evidence that an effect of fasting insulin 
on endometrial cancer was partially mediated by SHBG 
levels and that an effect of SHBG on endometrial cancer 
was largely mediated by bioavailable testosterone levels. 
An effect of fasting insulin on endometrial cancer risk 
was also strongly attenuated upon adjustment for bioa-
vailable testosterone levels which could reflect mediation 
of this effect by bioavailable testosterone or conditionally 
weak instrument bias for fasting insulin concentrations in 

this analysis. Our analyses found little evidence that sev-
eral previously reported molecular risk factors, includ-
ing several metabolic factors (e.g. LDL cholesterol, HDL 
cholesterol, IGF-1, adiponectin, leptin) and inflammatory 
markers (CRP, IL-6), were causally implicated in overall 
or endometrioid endometrial cancer risk.

Several of the findings in this analysis are consistent 
with evidence from prior conventional observational and 
MR analyses. For example, the effect of BMI on endome-
trial cancer risk and the stronger evidence of an effect 
on endometrioid, as compared to non-endometrioid, 
endometrial cancer is well-established in the literature. 
Additionally, this has been shown previously in an MR 
analysis that used an alternative strategy for instrument 
construction to our own [74]. Our findings supporting 
a causal effect of BMI on endometrial cancer risk (OR 
1.88, 95% CI 1.69 to 2.09 per SD (4.7 kg/m2) increase) are 
larger in magnitude than those from pooled analyses of 
conventional observational analyses (e.g. the World Can-
cer Research Fund (WCRF) pooled analysis of 26 pro-
spective studies: relative risk (RR) per 5.0 kg/m2 increase 
1.50, 95% CI 1.42 to 1.59), consistent with previous 
comparisons of observational and MR estimates across 
other cancer sites [75, 76]. Smaller magnitudes of effect 
in observational analyses may reflect regression dilution 
bias from single time-point measurements of BMI and/
or reverse causation from cancer-induced weight loss, 
whereas MR estimates reflect accumulated exposure 
across the life-course and are unlikely to be influenced by 
reverse causation [77].

In agreement with previous MR analyses, our results 
suggest a causal role of fasting insulin, total and bioavail-
able testosterone and SHBG in endometrial cancer risk, 

Table 3 (continued)

Exposure Outcome Method OR (95% CI) P value

SHBG Overall endometrial cancer IVW 0.71 (0.59 to 0.85) 2.07 ×  10−4

Weighted median 0.64 (0.48 to 0.86) 2.54 ×  10−3

Weighted mode 0.69 (0.53 to 0.89) 4.97 ×  10−3

MR-Egger 0.62 (0.46 to 0.84) 2.52 ×  10−3

Endometrioid endometrial cancer IVW 0.65 (0.54 to 0.80) 3.31 ×  10−5

Weighted median 0.60 (0.43 to 0.86) 4.90 ×  10−3

Weighted mode 0.58 (0.40 to 0.82) 2.50 ×  10−3

MR-Egger 0.61 (0.44 to 0.84) 3.33 ×  10−3

ORs are shown per increase in inverse-normal transformed nmol/L SHBG, natural log transformed pmol/L fasting insulin, inverse-normal transformed nmol/L 
total testosterone, natural log transformed nmol/L bioavailable testosterone, SD (38.7 mg/dL) LDL cholesterol, nmol/L IGF-1, mmol/L blood glucose, natural log 
transformed CRP mg/L IL-6, natural log transformed μg/ml adiponectin for combined instrument, natural log transformed μg/ml cis-only adiponectin, natural log 
transformed mg/L CRP, mg/dL triglyceride, SD (41.7 mg/dL) total serum cholesterol, mg/dL HDL cholesterol, pg/mL leptin. LDL low-density lipoprotein, HDL high-
density lipoprotein, IGF-1 insulin-like growth factor-1, IL-6 interleukin-6, CRP C-reactive protein, SHBG sex hormone-binding globulin, IVW inverse-variance weighted. 
For instrument construction of IGF-1 (cis and trans variants), a P value of 5 ×  10−6 was used
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although these previous reports either employed smaller 
sample sizes than this analysis (e.g. fasting insulin analy-
ses were performed in 1287 endometrial cancer cases vs 
12,906 cases in our analysis) or used somewhat differing 
methods to examine instrumental variable assumptions 
[27–29]. The restriction of an effect of BMI to bioavail-
able (and not total) testosterone is in agreement with 
previous observational studies which have suggested that 
BMI influences testosterone levels through decreased 
production of SHBG rather than a direct effect on tes-
tosterone production [78–82]. Additionally, important 
mediating roles of fasting insulin, bioavailable testos-
terone and SHBG in the relationship between BMI and 

endometrial cancer are consistent with studies of bariat-
ric surgery which have suggested protective effects of this 
procedure against endometrial cancer risk, along with 
reductions in insulin and bioavailable testosterone levels, 
and increases in SHBG levels [83–91]. Our findings sup-
porting a role of BMI on these traits are also consistent 
with the important endocrine function of adipose tissue, 
which is involved in sex steroid metabolism [80, 92–97].

Potential aetiological roles of the molecular mediators 
identified in this analysis are consistent with the “unop-
posed oestrogen” hypothesis which postulates that endo-
metrial carcinogenesis is driven by excess endogenous 
or exogenous oestrogen levels that are unopposed by 

Fig. 6 Mendelian randomization analysis of adult BMI on previously reported endometrial cancer risk factors. SHBG = sex hormone-binding 
globulin, LDL = low-density lipoprotein, CRP = C-reactive protein
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progesterone [98–100]. We were unable to incorporate 
oestrogen into this analysis as we were unable to iden-
tify reliable genetic instruments for this trait. All three 
of the molecular mediators highlighted in this analysis, 
however, are known to influence oestrogen: bioavailable 
testosterone is aromatized to oestradiol; SHBG binds 
with high-affinity to both oestradiol and bioavailable 
testosterone [100–105]; and insulin increases androgen 
and decreases SHBG production [106–109]. We found 
the inverse effect of SHBG on endometrial cancer risk 
was largely attenuated upon adjustment for bioavailable 

testosterone, suggesting a protective effect of SHBG may 
be driven via binding of biologically active fractions of 
circulating testosterone. The attenuation of an effect of 
fasting insulin on endometrial cancer upon adjustment 
for bioavailable testosterone could reflect mediation of 
this effect or the presence of conditionally weak instru-
ment bias in this model. In support of the latter expla-
nation, there is biological evidence that hyperinsulinemia 
and insulin resistance influence endometrial cancer via 
oestrogen-independent pathways. For example, insulin 
has been shown to bind directly to endometrial cells and 

Table 4 Results of MR analyses examining the effect of BMI on molecular risk factors

BMI is scaled to an SD increase (4.7 kg/m2). Effect estimate represents change in SD (41.7 mg/dL) total serum cholesterol, natural log transformed pmol/L fasting 
insulin, inverse-normal transformed nmol/L total testosterone, inverse-normal transformed nmol/L bioavailable testosterone and inverse-normal transformed nmol/L 
SHBG. SHBG sex hormone-binding globulin, IVW inverse-variance weighted

Outcome Method Effect estimate (95% CI) P value

Total serum cholesterol IVW − 0.03 (− 0.06 to 0.01) 1.22 ×  10−1

Weighted median − 0.06 (− 0.11 to − 0.01) 2.98 ×  10−2

Weighted mode − 0.08 (− 0.15 to 0.00) 4.46 ×  10−2

MR-Egger − 0.08 (− 0.16 to 0.00) 3.89 ×  10−2

Fasting insulin IVW 0.17 (0.15 to 0.19) 1.51 ×  10−74

Weighted median 0.18 (0.15 to 0.21) 8.51 ×  10−31

Weighted mode 0.18 (0.12 to 0.24) 1.88 ×  10−9

MR-Egger 0.20 (0.16 to 0.25) 1.30 ×  10−16

Total testosterone IVW 0.08 (0.05 to 0.11) 9.04 ×  10−10

Weighted median 0.06 (0.03 to 0.09) 4.95 ×  10−4

Weighted mode − 0.01 (− 0.08 to 0.07) 8.60 ×  10−1

MR-Egger 0.02 (− 0.05 to 0.09) 5.23 ×  10−1

Bioavailable testosterone IVW 0.26 (0.23 to 0.29) 9.97 ×  10−68

Weighted median 0.24 (0.20 to 0.28) 1.72 ×  10−38

Weighted mode 0.09 (0.01 to 0.17) 2.41 ×  10−2

MR-Egger 0.16 (0.08 to 0.24) 4.36 ×  10−5

SHBG IVW − 0.17 (− 0.19 to − 0.16) 4.86 ×  10−125

Weighted median − 0.16 (− 0.18 to − 0.15) 8.85 ×  10−77

Weighted mode − 0.15 (− 0.18 to − 0.12) 8.43 ×  10−20

MR-Egger − 0.13 (− 0.17 to − 0.09) 3.11 ×  10−11

Table 5 Results of multivariable MR mediation analysis

Direct effect is defined as the remaining effect of the exposure (BMI) on the outcome (endometrial cancer risk) when the effect of the candidate mediator on the 
outcome has been adjusted for. Indirect effect is defined as the effect of the exposure (BMI) on the outcome (endometrial cancer risk) through the candidate mediator. 
SHBG sex hormone-binding globulin

Mediator Outcome Direct effect of 
BMI on outcome

Indirect effect 
of mediator on 
outcome

% mediated (95% CI) P value

Fasting insulin Overall Endometrial Cancer 1.75 1.07 11% (1 to 21%) 2.89 ×  10−2

Endometrioid Endometrial Cancer 1.72 1.11 16% (3 to 28%) 1.24 ×  10−2

Bioavailable testosterone Overall Endometrial Cancer 1.70 1.11 15% (10 to 20%) 1.43 ×  10−8

Endometrioid Endometrial Cancer 1.72 1.11 15% (9 to 22%) 2.15 ×  10−6

SHBG Overall Endometrial Cancer 1.80 1.04 7% (1 to 12%) 1.81 ×  10−2

Endometrioid Endometrial Cancer 1.86 1.02 2% (− 9 to 14%) 6.87 ×  10−1
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promote proliferation, and can activate two pathways 
known to have an important role in carcinogenesis—
the phosphatidylinositol-3-kinase-protein kinase B/Akt 
(PI3K-PKB/Akt) and Ras/Raf/mitogen-activated protein 
kinase (Ras/Raf/MAPK) pathways [109–114].

Some findings from this MR analysis differ from those 
of prior conventional observational studies. For example, 
our analyses found little evidence to support causal roles 
of several metabolic traits (e.g. circulating HDL choles-
terol, triglycerides, adiponectin, leptin) and inflammatory 
markers (CRP, IL-6) in endometrial cancer risk, despite 
these traits being linked to endometrial cancer risk in 
conventional observational analyses [18–22]. Several of 
these traits (e.g. HDL cholesterol, LDL cholesterol, tri-
glycerides) represent highly correlated metabolic pertur-
bations associated with the obese phenotype which may 
be too clustered to disentangle using conventional multi-
variable regression methods [115]. Consequently, some of 
the divergence in findings across previous conventional 
observational studies and this MR analysis could reflect 
residual confounding in the former. Another potential 
explanation for divergence in findings is the susceptibility 
of conventional observational studies to reverse causation 
(i.e. latent, undiagnosed endometrial cancer influencing 
levels of a presumed exposure). For example, a previously 
reported association of circulating IL-6 concentrations 
with endometrial cancer risk could reflect IL-6 secretion 
by endometrial cancer-associated fibroblasts rather than 
a role of IL-6 in endometrial cancer development [116, 
117]. Similarly, reverse causation could explain the pre-
viously reported associations between CRP, a nonspecific 
indicator of inflammation, and endometrial cancer risk, 
as early stages of endometrial carcinogenesis may induce 
an inflammatory response, leading to elevated levels of 
CRP [118, 119].

We were unable to replicate a previously reported MR-
based inverse association of LDL cholesterol levels and 
endometrial cancer risk in the ECAC (IVW OR per SD 
increase in LDL cholesterol 0.90, 95% CI 0.85 to 0.95, P = 
8.39 ×  10−5). In the previous analysis, SNPs were permit-
ted to be in weak LD (pairwise correlation r2 < 0.05 vs r2 
< 0.001 in our analysis) and a Heterogeneity in Depend-
ent Instruments (HEIDI) test was performed to identify 
potentially pleiotropic SNPs, resulting in the removal 
of 6 such SNPs from the 146 SNPs initially used as an 
instrument. We attempted to replicate these previously 
reported findings using a more stringent r2 threshold (i.e. 
r2 < 0.001) followed by use of the HEIDI test (resulting 
in the removal of 2 potentially pleiotropic SNPs) which 
resulted in a causal estimate that was closer in magnitude 
to that previously reported (IVW OR 0.93, 95% CI 0.86 
to 1.00, P = 4.10 ×  10−2) (Additional file 1: Table S48). 
However, there was greater imprecision in our estimate 

compared to this previous analysis which could reflect 
the more liberal LD threshold employed in the earlier 
analysis.

Our MR analysis provides key insights into potential 
molecular pathways linking excess adiposity to endo-
metrial cancer risk. This analysis has several strengths 
including the use of a systematic approach to collate pre-
viously reported molecular risk factors for endometrial 
cancer; the appraisal of their causal relevance in overall 
and endometrioid endometrial cancer aetiology using an 
MR framework which should be less prone to conven-
tional issues of confounding and cannot be influenced 
by reverse causation; the employment of several com-
plementary sensitivity analyses to rigorously assess for 
violations of MR assumptions; and the use of a summary 
data-based MR approach which permitted us to leverage 
large-scale GWAS data from several studies, enhancing 
statistical power and precision of causal estimates.

There are several limitations to our analysis. First, 
we were unable to evaluate the role of six previously 
reported molecular risk factors for endometrial can-
cer due to the absence of reliable genetic instruments 
for these traits. These risk factors included oestradiol 
which is believed to be an important molecular media-
tor of the effect of BMI on endometrial cancer risk [9]. 
Second, some of the effect estimates for SNPs included 
in genetic instruments were obtained from discovery 
GWAS and have not been replicated in an independ-
ent sample which can result in “Winner’s curse” bias. 
There was sample overlap in this analysis across cer-
tain traits. However, the use of conventionally strong 
(P < 5.0 ×  10−8) instruments for these traits and gen-
eral consistency of results across sensitivity analy-
ses examining their robustness to potential Winner’s 
curse bias suggests that this phenomenon was unlikely 
to have substantial influence in this analysis. Third, 
although sex-specific sensitivity analyses were per-
formed where data were available, some prior GWAS 
used in this analysis did not examine for heterogene-
ity of SNP effects by sex which prevented evaluation 
of the effect of certain traits on endometrial cancer 
risk using sex-specific instruments. Fourth, univariable 
and multivariable MR analyses presented here assume 
that relationships between exposures and outcomes 
are linear, although it has been previously suggested 
that the relationship between BMI and endometrial 
cancer may best be explained by a non-linear model 
[12, 120]. Multivariable MR additionally assumes no 
exposure-mediator interaction. While methods exist to 
examine interaction in an individual-level setting, these 
do not currently exist for analyses using summary-
level data [121]. Fifth, our analysis was almost exclu-
sively restricted to individuals of European ancestry 
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to minimize bias from population stratification, which 
may limit the generalizability of our findings to non-
European populations. Sixth, we only investigated a 
single measure of adiposity (i.e. BMI) in our analyses. 
Though widely used as a measure of overall adiposity, 
BMI may fail to capture the independent contribu-
tion of central adiposity and/or body fat distribution 
on endometrial cancer risk. Seventh, our use of two-
sample MR with summary data precluded performing 
subgroup analysis and assessment of potential effect 
modification. Eighth, one instrument in our primary 
analysis (i.e. leptin) and one in a cis-variant-specific 
sensitivity analysis (i.e. IGF-1) consisted of a single SNP. 
While we found little evidence of association of these 
traits with endometrial cancer risk, we were unable to 
employ various “pleiotropy-robust” models to evaluate 
exclusion restriction assumptions and therefore cannot 
rule out the possibility of horizontal pleiotropy biasing 
causal estimates obtained toward the null. Finally, while 
various sensitivity analyses were performed to examine 
violations of exchangeability and exclusion restriction 
criteria, these assumptions are unverifiable.

With the global incidence of overweight and obesity 
projected to increase and challenges in implementing 
successful weight loss strategies, a greater understand-
ing of the molecular mechanisms by which obesity 
increases risk of disease, including endometrial can-
cer, is vital [122–126]. Type 2 diabetes and obesity are 
highly comorbid, with 75% of adults in the UK who 
have received a diabetes diagnosis being prescribed 
some form of anti-diabetic medication [127]. Our find-
ings suggest that use of such medications may confer 
a favourable secondary effect of reducing endometrial 
cancer risk among these high-risk groups. Among vari-
ous approved anti-diabetic medications, metformin in 
particular could plausibly offer the most pronounced 
endometrial cancer risk-reducing effect as it has been 
shown to not only increase insulin sensitivity, thus 
reversing insulin resistance and lowering fasting insu-
lin levels, but also inhibit endometrial proliferation [9, 
128]. In addition, unlike some other oral hypoglycae-
mic medications, metformin users show a tendency 
toward sustained weight loss [129]. Bioavailable tes-
tosterone and SHBG also present potential pharma-
cological targets, though the multifaceted function of 
these hormones means that targeting these traits may 
result in adverse effects [130–135]. Phase II clinical tri-
als examining the efficacy of a combination of contra-
ceptive intrauterine devices, metformin and weight loss 
interventions as a non-invasive treatment option for 
individuals with obesity with early-stage endometrial 
cancer have had encouraging results [136]. Addition-
ally, weight loss has been shown to improve oncological 

outcomes in women with endometrial cancer undergo-
ing progestin treatment [137].

Future studies should aim to “triangulate” these find-
ings using alternate epidemiological study designs with 
orthogonal (i.e. non-overlapping) sources of bias, for 
instance using directly measured insulin, SHBG and bio-
available testosterone in a large-scale cohort study, such 
as UK Biobank [138]. Another possible future direction 
for this work is to explore the effects of excess adiposity 
at different life stages, for instance, comparing pre- and 
post-menopausal BMI, in order to evaluate any poten-
tially independent effects of excess adiposity on endome-
trial cancer risk across the life-course.

Our systematic evaluation of 14 previously reported 
candidate mediators of the effect of BMI on endometrial 
cancer risk identifies fasting insulin, bioavailable testos-
terone and SHBG as plausible mediators of this relation-
ship. While we were unable to entirely disentangle the 
independent effects of these three traits, identification 
of a potential mediating role of these traits (and, in par-
ticular, fasting insulin) in endometrial carcinogenesis is 
nonetheless informative for the development of phar-
macological interventions targeting these traits for can-
cer prevention. In this respect, future assessment of the 
effect of drugs which target molecular mediators identi-
fied in this analysis using a “drug-target Mendelian ran-
domization” approach could inform on the potential 
efficacy of the repurposing of medications for endome-
trial cancer prevention.

Conclusion
Our comprehensive Mendelian randomization analysis 
provides insight into potential causal mechanisms link-
ing excess adiposity to endometrial cancer risk. We show 
that lifelong elevated BMI causes a larger increased risk 
than that reported in previous conventional observa-
tional studies. We found strong evidence for a mediat-
ing role of fasting insulin, bioavailable testosterone and 
SHBG in the effect of BMI on endometrial cancer risk. 
These results suggest targeting of insulin-related and hor-
monal traits as a potential strategy for the prevention of 
endometrial cancer.
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