1,103 research outputs found

    A modified HPLC method to detect salicylic acid in must and wine after its application in the field to induce fungus resistance

    Get PDF
    Since the application of salicylic acid (SA) to induce systemic acquired resistance (SAR) in plants is currently discussed as an alternative for copper against downy mildew (Plasmopara viticola), a sensitive HPLC method with UV/Vis-DAD-detection was developed to determinate SA in must and wine. The rate of recovery was 92 % at a level of 0.15 mg . l-1 with a detection limit of 0.003 mg . l-1. We have analyzed several musts and wines from field experiments with SA application and have compared their SA concentrations with 23 commercially available German wines. Nearly all samples contained small amounts of SA. The mean concentration in white and red wines was 0.05 mg . l-1 (0.11 mg . l-1 max.) and 0.16 mg . l-1 (0.43 mg . l-1 max.), respectively. Application of SA downy mildew control did not increase the amounts of SA in must or wine

    Comparison of in-situ delay monitors for use in Adaptive Voltage Scaling

    Get PDF
    In Adaptive Voltage Scaling (AVS) the supply voltage of digital circuits is tuned according to the circuit's actual operating condition, which enables dynamic compensation to PVTA variations. By exploiting the excessive safety margins added in state-of-the-art worst-case designs considerable power saving is achieved. In our approach, the operating condition of the circuit is monitored by in-situ delay monitors. This paper presents different designs to implement the in-situ delay monitors capable of detecting late but still non-erroneous transitions, called Pre-Errors. The developed Pre-Error monitors are integrated in a 16 bit multiplier test circuit and the resulting Pre-Error AVS system is modeled by a Markov chain in order to determine the power saving potential of each Pre-Error detection approach

    Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Get PDF
    International audienceThe Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br? present in the Dead Sea water. Furthermore, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br). The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the jagged diurnal pattern of BrO observed in the Dead Sea area, and for the positive correlation observed between BrO and O3 at low O3 concentrations. The present study has shown that the heterogeneous decomposition of BrONO2 has a great potential to affect the RBS activity in areas influenced by anthropogenic emissions, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes

    Zinc Deficiency Leads to Lipid Changes in Drosophila Brain Similar to Cognitive-Impairing Drugs: An Imaging Mass Spectrometry Study

    Get PDF
    Several diseases and disorders have been suggested to be associated with zinc deficiency, especially learning and memory impairment. To have better understanding about the connection between lipid changes and cognitive impairments, we investigated the effects of a zinc-chelated diet on certain brain lipids ofDrosophila melanogasterby using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The data revealed that there are increases in the levels of phosphatidylcholine and phosphatidylinositol in the central brains of the zinc-deficient flies compared to the control flies. In contrast, the abundance of phosphatidylethanolamine in the brains of the zinc-deficient flies is lower. These data are consistent with that of cognitive-diminishing drugs, thus providing insight into the biological and molecular effects of zinc deficiency on the major brain lipids and opening a new treatment target for cognitive deficit in zinc deficiency

    Harmonic Generation from Relativistic Plasma Surfaces in Ultra-Steep Plasma Density Gradients

    Get PDF
    Harmonic generation in the limit of ultra-steep density gradients is studied experimentally. Observations demonstrate that while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale-lengths (Lp/λ<1L_p/\lambda < 1) the absolute efficiency of the harmonics declines for the steepest plasma density scale-length Lp→0L_p \to 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the Relativistic Oscillating Mirror (ROM) was estimated to be in the range of 10^{-4} - 10^{-6} of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale-length

    Detection and reconstruction of complex structural cracking patterns with electrical imaging

    Get PDF
    The ability to detect cracks in structural elements is an integral component in the assessment of structural heath and integrity. Recently, Electrical Resistance Tomography (ERT) -based sensing skins have been shown to reliably image progressive surface damage on structural members. However, so far the approach has only been tested in cases of relatively simple crack patterns. Because the spatial resolution of ERT is generally low, it is an open question whether the ERT-based sensing skins are able to image complex structural cracking patterns. In this paper, we test the accuracy of ERT for reconstructing cracking patterns experimentally and computationally. In the computational study, we use a set of numerical simulations that model progressive cracking in a rectangular beam geometry. We also investigate the effect of image reconstruction methods on the crack pattern estimates: In addition to the contemporary image reconstruction method used in the recent sensing skin studies, we test the feasibility of a novel approach where model-based structural prior information on the cracking probability is accounted for in the image reconstruction. The results of this study indicate that ERT-based sensing skins are able to detect and reconstruct complex structural cracking patterns, especially when structural prior information is utilized in the image reconstruction

    Three-dimensional electrical impedance tomography to monitor unsaturated moisture ingress in cement-based materials

    Get PDF
    The development of tools to monitor unsaturated moisture flow in cement-based material is of great importance, as most degradation processes in cement-based materials take place in the presence of moisture. In this paper, the feasibility of electrical impedance tomography (EIT) to monitor three-dimensional (3D) moisture flow in mortar containing fine aggregates is investigated. In the experiments, EIT measurements are taken during moisture ingress in mortar, using electrodes attached on the outer surface of specimens. For EIT, the so-called difference imaging scheme is adopted to reconstruct the change of the 3D electrical conductivity distribution within a specimen caused by the ingress of water into mortar. To study the ability of EIT to detect differences in the rate of ingress, the experiment is performed using plain water and with water containing a viscosity-modifying agent yielding a slower flow rate. To corroborate EIT, X-ray computed tomography (CT) and simulations of unsaturated moisture flow are carried out. While X-ray CT shows contrast with respect to background only in highly saturated regions, EIT shows the conductivity change also in the regions of low degree of saturation. The results of EIT compare well with simulations of unsaturated moisture flow. Moreover, the EIT reconstructions show a clear difference between the cases of water without and with the viscosity-modifying agent and demonstrate the ability of EIT to distinguish between different flow rates

    Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?

    Get PDF
    Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks

    A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote

    Get PDF
    A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote (SiNAPS) is augmented by low-power electronics for power management and sensor interfacing, on a chip area of 0.25mm2. Direct charging of the target battery (e.g., NiMH microbattery) is achieved with end-to-end efficiencies up to 90% at AM1.5 illumination and 80% under 100 times reduced intensity. This requires matching the voltages of the photovoltaic module and the battery circumventing maximum power point tracking. Single solar cells show efficiencies up to 10% under AM1.5 illumination and open circuit voltages, Voc, of 450-500mV. To match the battery’s voltage the miniaturised solar cells (~1mm2 area) are connected in series via wire bonding. The chemical sensor platform (mm2 area) is set up to detect hydrogen gas concentration in the low ppm range and over a broad temperature range using a low power sensing interface circuit. Using Telran TZ1053 radio to send one sample measurement of both temperature and H2 concentration every 15 seconds, the average and active power consumption for the SiNAPS mote are less than 350nW and 2.1 μW respectively. Low-power miniaturised chemical sensors of liquid analytes through microfluidic delivery to silicon nanowires are also presented. These components demonstrate the potential of further miniaturization and application of sensor nodes beyond the typical physical sensors, and are enabled by the nanowire materials platform
    • …
    corecore