120 research outputs found

    FRMD4A Upregulation in Human Squamous Cell Carcinoma Promotes Tumor Growth and Metastasis and Is Associated with Poor Prognosis

    Get PDF
    New therapeutic strategies are needed to improve treatment of head and neck squamous cell carcinoma (HNSCC), an aggressive tumor with poor survival rates. FRMD4A is a human epidermal stem cell marker implicated previously in epithelial polarity that is upregulated in SCC cells. Here, we report that FRMD4A upregulation occurs in primary human HNSCCs where high expression levels correlate with increased risks of relapse. FRMD4A silencing decreased growth and metastasis of human SCC xenografts in skin and tongue, reduced SCC proliferation and intercellular adhesion, and stimulated caspase-3 activity and expression of terminal differentiation markers. Notably, FRMD4A attenuation caused nuclear accumulation of YAP, suggesting a potential role for FRMD4A in Hippo signaling. Treatment with the HSP90 inhibitor 17-DMAG or ligation of CD44 with hyaluronan caused nuclear depletion of FRMD4A, nuclear accumulation of YAP and reduced SCC growth and metastasis. Together, our findings suggest FRMD4A as a novel candidate therapeutic target in HNSCC based on the key role in metastatic growth we have identified

    The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer

    Get PDF
    Regulation by hypoxia may underlie the expression of vascular endothelial growth factor in bladder cancer. We have compared the distribution of vascular endothelial growth factor mRNA with a hypoxia marker, carbonic anhydrase 9 (CA IX). vascular endothelial growth factor mRNA was analysed by in situ hybridisation and CA IX by immunochemistry in 22 cases of bladder cancer. The relationship of microvessels to the distribution of CA IX was determined. In a separate series of 49 superficial tumours, CA IX immunostaining was compared with clinico-pathological outcome. In superficial and invasive disease there was overlap in the expression of vascular endothelial growth factor and CA IX, CA IX being more widespread. Both were expressed predominantly on the luminal surface, and surrounding areas of necrosis (invasive tumours). Expression of both factors was greater in superficial disease. Expression was absent within ∼80 μm of microvessels. Unlike vascular endothelial growth factor, CA IX did not predict outcome in superficial disease. Differential responses to reoxygenation provide one explanation: vascular endothelial growth factor mRNA declined rapidly, while CA IX expression was sustained for >72 h. Expression of vascular endothelial growth factor mRNA in bladder tumours is consistent with hypoxic regulation and suggests differential regulation in superficial vs invasive disease. The expression of CA IX on the luminal surface justifies investigation of its utility as a therapeutic target/prognostic indicator

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active Ξ²-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear Ξ²-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    Synthetic emmprin peptides with chitobiose substitution stimulate MMP-2 production by fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emmprin, a glycoprotein containing two Ig domains, is enriched on tumor cell surfaces and stimulates matrix metalloproteinase (MMP) production by adjacent stromal cells. Its first Ig domain (ECI) contains the biologically active site. The dependence of emmprin activity on N-glycosylation is controversial. We investigated whether synthetic ECI with the shortest sugar is functionally active.</p> <p>Methods</p> <p>The whole ECI peptides carrying sugar chains, a chitobiose unit or N-linked core pentasaccharide, were synthesized by the thioester method and added to fibroblasts to examine whether they stimulate MMP-2 production.</p> <p>Results</p> <p>ECI carrying a chitobiose unit, ECI-(GlcNAc) <sub>2</sub>, but not ECI without a chitobiose unit or the chitobiose unit alone, dose-dependently stimulated MMP-2 production by fibroblasts. ECI with longer chitobiose units, ECI-[(Man)<sub>3</sub>(GlcNAc)<sub>2</sub>], also stimulated MMP-2 production, but the extent of its stimulation was lower than that of ECI-(GlcNAc)<sub>2</sub>.</p> <p>Conclusions</p> <p>Our results indicate that ECI can mimic emmprin activity when substituted with chitobiose, the disaccharide with which N-glycosylation starts.</p

    Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers.

    Full text link
    Tumor cell-derived collagenase stimulatory factor (TCSF) stimulates in vitro the biosynthesis of various matrix metalloproteinases involved in tumor invasion, such as interstitial collagenase, gelatinase A, and stromelysin 1. The expression of TCSF mRNAs was studied in vivo, using in situ hybridization and Northern blotting analysis, in seven normal tissues and in 22 squamous cell carcinomas of the lung, and in seven benign proliferations and in 22 ductal carcinomas of the mammary gland. By in situ hybridization, TCSF mRNAs were detected in 40 of 44 carcinomas, in pre-invasive and invasive cancer cells of both lung and breast cancers. TCSF mRNAs and gelatinase A mRNAs were both visualized in the same areas in serial sections in breast cancers, and were expressed by different cells, tumor cells, and fibroblasts. The histological results were confirmed by Northern blot analysis, which showed a higher expression of TCSF mRNAs in cancers than in benign and normal tissues. These observations support the hypothesis that TCSF is an important factor in lung and breast tumor progression

    Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients

    Get PDF
    Early detection of polyps or colorectal carcinoma can reduce colorectal carcinoma-associated deaths. Previous studies have demonstrated raised serum levels of matrix metalloproteinase 9 (sMMP-9) in a range of cancers. The aim of this study was to investigate the role of sMMP-9 levels in identifying colorectal neoplasia. Consenting patients donated a blood sample and were assessed by proforma-led history and physical examination. Samples were analysed for sMMP-9 concentration (enzyme-linked immuno-sorbant assay) and compared to final diagnoses. Logistic regression modelling determined independent factors associated with neoplasia. A total of 365 patients were recruited of whom 300 were analysed, including 46 normal controls. A total of 27 significant adenomas and 63 malignancies were identified. The median sMMP-9 concentration was 443ng mlβˆ’1 (IQR: 219–782; mean: 546). Patients with neoplasia had significantly elevated sMMP-9 levels (P<0.001). Logistic regression modelling identified elevated log(sMMP-9) as the most significant predictor of neoplasia (Ο‡2=38.33, P<0.001). Other significant factors were age, sex, smoking history, abdominal pain and weight loss. The model accurately predicted neoplasia in 77.3% of cases. Sensitivity and specificity were 77.9 and 77.1%. sMMP-9 estimation can accurately stratify patient to low- or high-risk cohorts. Serum sampling is a potential means of avoiding unnecessary colonoscopy and reducing patient anxiety, iatrogenic morbidity and mortality, and cost

    Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer

    Get PDF
    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a limited (n=33) number of patients. Broad-spectrum matrix metalloproteinase activity and both the active and latent forms of the gelatinases matrix metalloproteinase-2 and -9 were higher in tumour than in normal mucosa. The ratio's between active and latent forms of matrix metalloproteinase-2 and -9 were highest in tumour tissue and normal mucosa, respectively. Matrix metalloproteinase-2 levels, both active and latent forms, correlated inversely with stage of disease, the tumours without synchronous distant metastases containing significantly (P=0.005) more active matrix metalloproteinase-2 than the others. At much lower levels of activity, the same trend was observed in distant normal mucosa. The level of latent form of matrix metalloproteinase-9 in tumour depended on tumour location. Neither the active form of matrix metalloproteinase-9 nor broad-spectrum matrix metalloproteinase activity in tumour tissue did correlate with any of the clinicopathological parameters investigated. The results demonstrate explicit differences between the activity of matrix metalloproteinase-2 and -9, indicating different roles for both gelatinases in tumour progression. Such data are necessary in order to develop rational anti-cancer therapies based on inhibition of specific matrix metalloproteinases

    Quantum Dots Do Not Affect the Behaviour of Mouse Embryonic Stem Cells and Kidney Stem Cells and Are Suitable for Short-Term Tracking

    Get PDF
    Quantum dots (QDs) are small nanocrystals widely used for labelling cells in order to enable cell tracking in complex environments in vitro, ex vivo and in vivo. They present many advantages over traditional fluorescent markers as they are resistant to photobleaching and have narrow emission spectra. Although QDs have been used effectively in cell tracking applications, their suitability has been questioned by reports showing they can affect stem cell behaviour and can be transferred to neighbouring cells. Using a variety of cellular and molecular biology techniques, we have investigated the effect of QDs on the proliferation and differentiation potential of two stem cell types: mouse embryonic stem cells and tissue-specific stem cells derived from mouse kidney. We have also tested if QDs released from living or dead cells can be taken up by neighbouring cells, and we have determined if QDs affect the degree of cell-cell fusion; this information is critical in order to assess the suitability of QDs for stem cell tracking. We show here that QDs have no effect on the viability, proliferation or differentiation potential of the two stem cell types. Furthermore, we show that the extent of transfer of QDs to neighbouring cells is <4%, and that QDs do not increase the degree of cell-cell fusion. However, although the QDs have a high labelling efficiency (>85%), they are rapidly depleted from both stem cell populations. Taken together, our results suggest that QDs are effective cell labelling probes that are suitable for short-term stem cell tracking

    Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer

    Get PDF
    BACKGROUND: Delta-like ligand 4 (Dll4) is a Notch ligand that is upregulated by hypoxia and vascular endothelial growth factor-A (VEGF-A) and is reported to have a role in tumor angiogenesis. Evidence from xenograft studies suggests that inhibiting Dll4-Notch signalling may overcome resistance to anti-VEGF therapy. The aim of this study was to characterise the expression of Dll4 in colon cancer and to assess whether it is associated with markers of hypoxia and prognosis. METHOD: In all, 177 colon cancers were represented in tissue microarrays. Immunohistochemistry was performed using validated antibodies against Dll4, VEGF, hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, prolyl hydroxylase (PHD)1, PHD2, PHD3 and carbonic anhydrase 9 (CA9). RESULTS: The expression of Dll4 was observed preferentially in the endothelium of 71% (125 out of 175) of colon cancers, but not in the endothelium adjacent to normal mucosa (none out of 107, P&lt;0.0001). The expression of VEGF was significantly associated with HIF-2alpha (P&lt;0.0001) and Dll4 (P=0.010). Only HIF-2alpha had a significant multivariate prognostic effect (hazard ratio 1.61, 95% confidence interval 1.01-2.57). Delta-like ligand 4 was also expressed by neoplastic cells, particularly neoplastic goblet cells. CONCLUSION: Endothelial expression of Dll4 is not a prognostic factor, but is significantly associated with VEGF. Assessing endothelial Dll4 expression may be critical in predicting response to anti-VEGF therapies

    Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion

    Get PDF
    Background Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Methods Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Results Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). Conclusion This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively
    • …
    corecore