1,145 research outputs found

    Kondo physics in tunable semiconductor nanowire quantum dots

    Full text link
    We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.Comment: 4 pages, 4 figure

    Manifesting Color-Kinematics Duality in the Scattering Equation Formalism

    Get PDF
    We prove that the scattering equation formalism for Yang-Mills amplitudes can be used to make manifest the theory's color-kinematics duality. This is achieved through a concrete reduction algorithm which renders this duality manifest term-by-term. The reduction follows from the recently derived set of identities for amplitudes expressed in the scattering equation formalism that are analogous to monodromy relations in string theory. A byproduct of our algorithm is a generalization of the identities among gravity and Yang-Mills amplitudes.Comment: 20 pages, 20 figure

    Analytic Representations of Yang-Mills Amplitudes

    Get PDF
    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.Comment: 29 pages, 43 figures; also included is a Mathematica notebook with explicit formulae. v2: citations added, and several (important) typos fixe

    Scattering Equations and Feynman Diagrams

    Get PDF
    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in ϕ3\phi^3-theory. We also discuss the generalization to general scalar field theories with ϕp\phi^p interactions, corresponding to polygonal graphs involving vertices of order pp. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.Comment: 18 pages, 57 figure

    Kernekraft og nuklear sikkerhed 2010

    Get PDF

    Integration Rules for Loop Scattering Equations

    Get PDF
    We formulate new integration rules for one-loop scattering equations analogous to those at tree-level, and test them in a number of non-trivial cases for amplitudes in scalar ϕ3\phi^3-theory. This formalism greatly facilitates the evaluation of amplitudes in the CHY representation at one-loop order, without the need to explicitly sum over the solutions to the loop-level scattering equations.Comment: 22 pages, 17 figure

    Integration Rules for Scattering Equations

    Get PDF
    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any M\"obius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.Comment: 30 pages, 29 figure
    corecore