Technical University of Denmark

A multi-laboratory testing of calibration methods for environmental dose rate meters

Bøtter-Jensen, Lars; Nielsen, Sven Poul

Publication date: 1985

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Bøtter-Jensen, L., & Nielsen, S. P. (1985). A multi-laboratory testing of calibration methods for environmental dose rate meters. (Risø-M; No. 2542).

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

RISØ-M-2542

A MULTI-LABORATORY TESTING OF CALIBRATION METHODS FOR ENVIRON-MENTAL DOSE RATE METERS

Lars Bøtter-Jensen and Sven P. Nielsen

<u>Abstract.</u> Calibration experiments were carried out at Risø National Laboratory 28-30 August 1985 with the aim of testing calibration methods for instruments used for background gamma radiation monitoring.

Two calibration methods using certified gamma sources were tested: 1) A shadow-shield calibration method, and 2) A freefield calibration set-up. The experiments comprised studies of 25 instruments from 11 European laboratories.

(Continued on next page)

November 1985 Risø National Laboratory, DK-4000 Roskilde, Denmark

11 I I

For most of the instruments the two methods gave identical results. The shadow-shield calibration, however, proved to be more accurate. Additional measurements of the natural background and the cosmic component gave useful information on the energy dependency of the detectors.

The calibration experiments were sponsored by CEC under contract No. 1244/1/84.

INIS-Descriptors: BACKGROUND RADIATION; CALIBRATION; DOSE RATEMETERS; GAMMA RADIATION; INTERLABORATORY COMPARISONS; NATURAL RADIOACTIVITY; RADIATION MONITORS; TESTING

1

1

ISBN 87-550-1174-8 ISSN 0106-6435

Grafisk Service, Risø 1986

CONTENTS

1.	INTRODUCTION	5
2.	INSTRUMENTS	7
3.	MEASURING PROGRAMME	8
4.	CALIBRATION METHODS	11
	4.1 Shadow-shield set-up	11
	4.2 Free-field set-up	13
5.	RESULTS AND DISCUSSION	16
	5.1 Analysis of calibration measurements	16
	5.2 Discussion	23
6.	CONCLUSIONS	24
RE	PERENCES	25
PAI	RTICIPANT LIST	26
AP	PENDIX: Tables and histograms of results	27

I I

Page

1. INTRODUCTION

The calibration of environmental gamma monitors is encumbered with several problems. Due to the requirement of high sensitivity, the detectors are usually large, making it difficult to obtain proper radiation geometry in a calibration set-up. Different detector types such as ionisation chambers, scintillators, GM-, and proportional counters show varying energy responses that may cause severe errors if corrections are not applied.

Gamma calibration fields covering a range of low intensities should be established in order to measure the linearity of detector response over a wide range. The natural background and scatter contributions from surrounding materials become significant when high instrument accuracy is demanded.

The Directorate-General, Employment, Social affairs and Education, CEC, Luxembourg supported a pilot study on practical methods for calibrating environmental dose rate meters. Several of the experiments were carried out at Risø National Laboratory in August 1985⁽¹⁾ and the present report gives a description of the calibration methods and the results from this work.

A total of 21 scientists from 11 different European laboratories participated with 25 instruments.

Two calibration methods that have been used at Risø for several years⁽²⁾ were tested at low dose rates. One was the "shadow-shield" calibration method where the primary beam intensity from a certified ¹³ Cs gamma source was determined as the difference between the responses obtained with and without a lead shield placed between the source and detector. The other method used a free field set-up where the detector responses from ²²⁶Ra, ¹³⁷Cs, and ⁶⁰Co gamma sources were

determined as the differences between the readings with and without the sources present. The gamma rays scattered from the ground and air were considered in addition to the unscattered gamma rays from the primary beam.

Since most instruments were calibrated in units of roentgens, all radiation intensities in this report are reported in microroentgens per hour ($\mu R/h$); these can be converted to air kerma rates in units of microgray per hour ($\mu G/h$) by multiplication with 0.0087.

2. INSTRUMENTS

Instrument

The dose rate meters used were high-pressure ionisation chambers, plastic scintillators, Geiger-Müller counters, and proportional counters.

The instruments are listed in Table 1, showing code numbers for identification of the results, manufacturers, and types of detector.

Code	No.	Detector	Manufacturer	Туре
1		High-pressure ionisation chamber	Reuter & Stokes	RSS-111
2		•	-	
3				
4		7		
5				
6			•	•
7		M	-	
8		N	Centronic	IG5/A8.5N11.5
9		Atmospheric-pressure ionisation chamber	Seibersdorf	LS10-120
10		¥		LS120-08
11		Plastic scintillator	Münchener Apparatebau	MAB604.1
12				-
13		я	-	
14				-
15		n	Halle	H 7907
16			•	H 7201/10
17		9	Stu đsvik	2414
18			Befic	6134A
19		GM counter	Mini Instruments	MC70
20			BNL	
21				
22		ø	Mini Instruments	
23			•	MC71
24			Berthold	BZ120
25		Proportional counter		LB6123

I.

1 I I I I

1 I

1

1

Table 1. Instruments used in the Rise calibration experiments. The code numbers refer to the reported results.

3. MEASURING PROGRAMME

The measuring programme was divided into 4 parts:

- 1) Shadow-shield calibration measurements of a certified ¹³⁷Cs source.
- 2) Free-field calibration measurements of certified 137Cs, 60Co, and 226Ra sources.
- 3) Measurement of a typical Danish background radiation level.
- 4) Measurement of the cosmic component at sea.

The shadow-shield experiments were arranged in a cellar facility with floor dimensions of 6 metres by 12 metres and with a height to the ceiling of 2.3 metres. Four individual set-ups arranged on wooden benches with a common source position allowed four measurements to be carried out simultaneously. Measurements were taken at source-to-detector distances of 3, 4, and 5 metres to obtain different dose rates with the same source. (See Figs. 1 and 2). The source and detectors were placed 1.15 m above the floor.

The free-field experiments were arranged on a flat grass field with the sources and the instruments placed 1 metre above the ground. The instruments were positioned in circles around the source to obtain source-to-detector distances of 3, 5, and 10 metres. (See Fig. 3)

The background radiation was measured at this field location with the sources removed from the area.

The cosmic component was measured at the nearby Roskilde Fiord. An old steam boat using coal was hired for the occasion. The measurements took place in the middle of the fiord about 3 km from land and at a sea depth of about 4.5 m. These conditions ensured the absence of the terrestrial gamma-ray component.

1 I I I I I

Fig. 1. The shadow-shield calibration facility.

<u>Fig. 2.</u> A shadow-shield calibration set-up for Reuter Stokes RSS-111 high-pressure ionisation chamber.

Fig. 3. The free-field calibration set-up.

4. CALIBRATION METHODS

Dose rate meters are calibrated by placing them in known radiation fields from certified gamma sources. The present calibration experiments were carried out with 226 Ra, PtIr (nominal activity 1 mg), 137 Cs (nominal activity 5.4 mCi), and 60 Co (nominal activity 1.6 mCi) sources produced and certified by the Radiochemical Centre Amersham, U.K. The nominal activity of the 226 Ra source was certified by weight with an accuracy of \pm 1%. The nominal activity for the 137 Cs and 60 Co sources were certified in terms of exposure rates measured at 1 metre distance from source. The accuracy of the calibration was \pm 5%(3). As a basis, the primary beam intensities from the sources were calculated from the relation:

$$\dot{x}_{D} = \dot{x}_{100} \left(\frac{100}{D}\right)^{2} e^{-\mu (D-100)} K_{d}$$

where X_{100} is the exposure rate at 1 metre distance according to the source certificate (for 226 Ra using an exposure rate constant of 0.825 Rm² h⁻¹ g⁻¹), μ the linear attenuation coefficient for the radiation in air, D the distance in cm between detector and source, and K_d the source decay-correction factor.

4.1. Shadow shield set-up

The shadow-shield calibration (see Fig. 4) may be carried out indoors. The source-to-detector distance must be sufficiently large to ensure a nearly parallel beam of uniform intensity over the entire detector volume.

The detector response with no shield present is the ambient background (A) plus radiation from the source; the latter comprises primary gamma rays (P) and room scatter (S).

Fig. 4. "Shadow-shield" calibration set-up. (P) primary beam, (A) ambient radiation, (S) room scatter component.

To determine the responses from the components A and S, a lead shield thick enough to absorb the primary gamma rays is placed between the source and detector so as to "shadow shield" the primary beam. The difference between the readings with and without the shield, yields the response from the primary beam.

Dose rates from the 137Cs source were measured at three different source-to-detector distances (3, 4, and 5 metres).

The calculated nominal exposure rates on the day of the experiments are shown in Table 2.

Table 2. Nominal exposure rates from the shadow-shield calibration.

		Source:	137 _{Св}			
	Distanc	<u></u>	μ R/h			
	3 m		185.1			
	4 m		103.2			
	5 m		65.4			
	 U	~ 9.28	x 10-5 cm-1			
Air	T _{1/2} temperature	= 30.02 $= 20^{\circ}C$,	y air pressure	2 760	mm	Нg

4.2. Free-field set-up

The free-field calibration is obtained by arranging a set-up on a flat ground out of doors with source and detector placed at 1 metre above the ground (see Fig. 5).

Fig. 5. Free-field calibration set-up. (P) primary beam, (A) ambient radiation, (S) build-up in air, (G) ground albedo.

The radiation components to be considered are the ambient background (A), the primary beam from the source (P), the scattered component from the ground surface (G), and the build-up in air (S). According to the Chilton and Huddleston formula for the differential dose albedo for gamma rays on concrete (4), ground albedo figures for different geometries were calculated for 226Ra, 137Cs, and 60Co point sources (see Fig. 6). Experience has shown that the difference between concrete and soil in this context is negligible⁽²⁾. The air-scattered component at the detector was determined as a function of source-to-detector distance by means of Monte Carlo calculations (see Fig. 7).

<u>Fig. 6.</u> Reflected dose rate from a flat ground as a percentage of the direct dose rate at different heights and distances for 226 Ra, 137 Cs, and 60 Co point sources.

<u>Fig. 7.</u> Build-up in air as a percentage of the direct dose rate from 226 Ra, 137 Cs, and 60 Co point sources as a function of distance, determined from Monte Carlo calculations.

The nominal values for the calculated exposure rates at 3, 5, and 10 metre distances from the sources 1 metre above ground level are given in Table 3.

Source	Distance (m)	Decay-corre exposure r (µR/h)	cted G ate al	round Lbedo (%)	Air build-up (%)	Nominal value (µR/h)
137 _{Cs}	3	185.1		. .7	3.0	208.5
	5	65.4	13	3.0	4.9	77.1
	10	15.6	19	5.0	9.7	19.5
60 _{Co}	3	166.9		5.9	1.6	179.4
	5	59.3	8	3.8	2.8	66.2
-	10	14.3	12	2.3	5.6	16.9
226 _{Ra}	3	84.9	-	7.3	2.2	93.0
-	5	30.1	10).3	3.7	34.3
-	10	7.25	12	2.8	7.3	8.71
		137 _{CS}	60 _{CO}	2	26 _{Ra}	
	μ (cm ⁻¹)	9.28x10-5	6.8x10-5	7.5	x10 ⁻⁵ (avera	ge)
	$T_{1/2}$ (y)	30.02	5.27	1	601	

Table 3. Nominal exposure rates for the free-field calibrations. (1 m above ground).

Air temperature 20°C, air pressure 760 mm Hg

5. RESULTS AND DISCUSSION

The results of the measurements are presented in tables and figures in the appendix.

The results of the calibration measurements including their standard deviations are given in Table A1. These results are also shown in histograms. Figure A1 shows the data from the shadow-shield calibration, and Figs. A2, A3 and A4 show the data from the free-field calibration for each of the three sources.

The results of the measurements of the natural background level are given in Table A2 and shown in Fig. A5.

The results of the cosmic-component measurements are given in Table A3 and shown in Fig. A6.

The results of the level of the terrestrial component, obtained as the difference between the two aforementioned measurements, are given in Table A4 and shown in Fig. A7.

5.1. Analysis of calibration measurements

The results of the calibration measurements from Table A1 are compared with the nominal values calculated from the sourcecertificate data. This comparison is shown in Table A5, which lists ratios of measured-to-nominal values of exposure rates for each detector and the two calibration methods. The standard deviations (sd) of the ratios include the sd's of the measurement results and sd's of the nominal data.

The uncertainties of the source data from the certificates are neglected, however, for two reasons. First, because systematic uncertainties are dominant in the uncertainties given by the source manufacturers. These errors are not considered in the present analysis. Secondly, because even the statistical uncertainties from the certificates are irrelevant for the calculations and tests presented in this section.

For the shalow-shield calibration the nominal values, X_{nom} , are calculated according to

$$\dot{x}_{nom} = \dot{x}_{c} \exp[-(\nu/\rho)_{att} \rho (d-1)]/d^{2},$$

where X_C is the decay-corrected source output from the certificate, $(\mu/\rho)_{att}$ is the mass-attenuation coefficient for air at the mean energy of the unscattered gamma rays from the source, ρ is the air density, and d is the source-to-detector distance in metres.

The uncertainties of these components are assessed on a subjective basis. The uncertainty of X_C is neglected, the sd of $(\nu/\rho)_{att}$ is estimated at 5%, the sd of the air density is estimated at 1%, and the sd of the distance is estimated at 0.5 cm. The uncertainties are combined to give the total sd of the nominal data for each of the distances as shown in Table 4.

sd(1/d ²) (%)	sd(exp) (%)	sd(tot) (%)
0.33	0.09	0.34
0.25	0.14	0.29
0.20	0.19	0.28
	sd(1/d ²) (%) 0.33 0.25 0.20	sd(1/d ²) sd(exp) (%) (%) 0.33 0.09 0.25 0.14 0.20 0.19

<u>Table 4.</u> Relative standard deviations for the nominal data at the shadow-shield calibration measurements.

For the free-field calibration the nominal data are calculated according to:

$$\dot{x}_{nom} = \dot{x}_{c} \exp[-(\mu/\rho)_{att} \rho (d-1)](1+s)/d^2,$$

where s accounts for the scattered gamma rays from the air and the ground and the other symbols have the same meaning as previously. Again the sd of X_C is neglected, the sd of $(\mu/\rho)_{att}$ is estimated at 5%, the sd of ρ is estimated at 1%, the sd of s is estimated at 10%, and the sd of d is estimated at 1 cm. The combination of these uncertainties gives the total sd of the nominal data for each of the sources and each of the distances as shown in Table 5.

Table 5. Relative standard deviations for the nominal data at the free-field calibration measurements.

Distances	sđ(1/d ²)	sd(exp)	sd(l+s)	sd(tot)
	(8)	(%)	(%)	(%)
Cs137, 3 m	0.67	0.09	1.13	1.32
– 5 m	0.40	0.19	1.52	1.58
- 10 m	0.20	0.42	1.98	2.03
Co60, 3 m	0.67	0.07	0.70	0.98
— 5 m	0.40	0.14	1.04	1.12
- 10 m	0.20	0.31	1.52	1.56
Ra226, 3 m	0.67	0.23	0.87	1.12
~ 5 m	0.40	0.38	1.23	1.35
- 10 m	0.20	0.75	1.67	1.84

For each set of calibration measurements a weighted mean is calculated from the three observations according to:

mean=
$$([x_i/sd_i^2)/[(1/sd_i)^2]$$
,

where the x_i 's are the measurement results and the sd_i 's the corresponding standard deviations. The standard deviation of the mean is calculated according to:

$$sd(mean) = ((1/sd_i^2)^{-1/2})$$

It is noted that when all the sd_i 's are equal these two expressions yield the well-known formulas for the mean and standard deviation of the mean (mean=($\sum x_i$)/n and sd(mean)= sd/\sqrt{n}).

It is, furthermore, tested whether or not the results for the three distances, x_i , deviate more (or less) from the mean value than predicted by the standard deviations of the individual results, sd_i . For this purpose a test value is calculated:

 $T=\sum [(x_i-mean)/sd_i]^2$

This test value is chi-square distributed with 2 (=n-1) degrees of freedom, and therefore, the test value is expected to be approximately equal to 2. If the test value is much larger than 2, this indicates that the uncertainties of the measured values are underestimated, and if the test value is much smaller than 2, this indicates that the uncertainties are overestimated.

The statistical tests are carried out at three significance levels: 5%, 1%, and 0.1%. For two degrees of freedom these levels correspond to upper bounds for the test values of 5.99, 9.21, and 13.8, respectively, and to lower bounds for the test values of 0.102, 0.020, and 0.002, respectively.

If for a set of results a T-value of 10.2 is obtained, this value is greater than 9.21 and smaller than 13.8, and the test

is thus found significant at the 1% level. This could be due to pure chance, but the probability of that is estimated from the significance level to be less than 1%. Therefore, it might be concluded that the measurement uncertainties from this set of results are underestimated.

The outcome of the tests are indicated in parentheses shown in Table A5 after the mean ratios. Non-significant results are designated by ns. Large deviations are shown by asterisks, * = probably significant (5% level), ** = significant (1% level), and *** = highly significant (0.1% level). Small deviations are shown by plus signs, + = probably significant (5% level), ++ = significant (1% level), and +++ = highly significant (0.1% level).

Where no uncertainties are given by the participants simple arithmetic means are calculated.

The results from Table A5 are shown in Figs. 8, 9, 10 and 11. Figure 8 shows the results from the shadow-shield calibration, and Figs. 9, 10 and 11 show the results from the free-field calibration for each of the three sources. Where not shielded by the circular marks, the error bars give the 95% confidence intervals for the means. Where measurement uncertainties were available a confidence factor of 1.96 from the Normal distribution was used, and where these uncertainties were not available a confidence factor of 4.30 from the Student's-t distribution was used.

Finally, the results of the two calibration methods using the same ¹³⁷Cs source are compared. The mean values from the shadowshield calibration and from the free-field calibration are compared to see if the difference between the two is statistically significant. A chi-square test like the one mentioned above is used where measurement uncertainties are available and a Students-t test is used elsewhere. The results are shown in Table 6 using the same significance symbols as given previously.

<u>Fig. 8.</u> Mean values of measured-to-calculated exposure rates from 137 Cs gamma radiation at the shadow-shield calibration measurements. The error bars give 95% confidence intervals.

<u>Fig. 9.</u> Mean values of measured-to-calculated exposure rates from 137 Cs gamma radiation at the free-field calibration measurements. The error bars give 95% confidence intervals.

1 1

<u>Pig. 10.</u> Mean values of measured-to-calculated exposure rates from 60 Co gamma radiation at the free-field calibration measurements. The error bars give 95% confidence intervals.

<u>Fig. 11.</u> Mean values of measured-to-calculated exposure rates from 226 Ra gamma radiation at the free-field calibration measurements. The error bars give 95% confidence intervals.

	Detector	Significance
1.	Ionisation chamber	nŝ
2.	-	ns
3.	-	ns
4.	-	ns
5.	-	ns
6.	-	ns
8.	-	*
11.	Scintillation detector	***
12.	-	***
13.	-	*
14.	-	**
15.	-	ns
16.	-	ns
17.	-	ns
18.	-	ns
19.	GM counters	*
21.	-	ns
22.	-	ns
23.	-	ns
24.	-	***
25.	Proportional counter	ns

<u>Table 6.</u> Comparison of measured detector responses obtained with the two calibration methods for 137Cs gamma rays.

5.2. Discussion

It is noted from Figs. 8 and 9 and from Table A5 that the results from the shadow-shield calibration method are more precise than those from the free-field calibration method. The results from the former method are also more accurate in the sense that the gamma-ray energies at which the results are obtained, are known well. For the free-field method the scattered gamma-ray component modifies the gamma-ray energy distribution at the detector position, so the average energy is lower and less well-defined. This may also cause some difficulties when one compares results from detectors that have different responses at low energies.

This low-energy effect causes a trend of the results obtained at the free-field experiments for the three distances. The trend is observed for most of the detectors where the ratios in Table A5 decrease with increasing source-to-detector distance. The effect is less pronounced for the RSS-111 ionisation chambers, which have an energy cut-off of about 50 keV; while the effect is more pronounced for the MAB 604 detectors, which have an energy cut-off of about 10 keV. This effect is also reflected in the comparison of the observed detector responses obtained with the two methods for 137Cs gamma rays (Table 6). For the main part of the detectors, however, the two methods give results that agree within a few per cent.

As for gamma-ray energy responses it must be noted that the results for the detectors with code numbers 20, 21, 22, and 23 were derived using different calibration factors for the different gamma-ray sources. For all other detectors the same calibration factors were used for all the sources.

When making a comparison between the merits of the two calibration methods, it should be noted that the dimensions of the shadow shield used for detector number 8 were insufficient for complete shielding of the chamber. Also, the ratios of the observed-tocalculated exposure rates for this instrument would have been higher if the chamber had been adequately shielded. The undershielding of this chamber, furthermore, causes the standard deviation of the means for all the results at each distance to be higher for the shadow-shield experiments (6-7%) than for the free-field experiments (4-5%), as it is seen in Figs. Al and A2.

6. CONCLUSIONS

The calibration measurements provide a useful means for comparing the two calibration methods. Clearly the shadow-shield calibration method yields the most accurate and reliable results. This, however, has to be considered in the light of the increased amounts of time and resources required by that method compared to the free-field calibration method, and for most of the instruments the two methods give identical results.

Futhermore, the calibration measurements and the measurements of the natural background and the cosmic component give information on detector responses to gamma rays of different energies. That information is valuable to all laboratories engaged in measurements of environmental dose rates from gamma radiation.

REFERENCES

- Final Risø Report on CEC Study Contract No. 1216/83 (1984).
 "Restricted Intercomparison Programme on Environmental Dosemeters", September 1984. To be published in an EUR report.
- 2) BØTTER-JENSEN, L. (1982). "Calibration and Standardization of Instruments for Background Radiation Monitoring", SRP, Third International Symposium, Radiation Protection Advances in Theory and Practice, Inverness, Scotland, 6-11 June 1982.
- 3) READ, L.R., BURNS, J.E., and LIQUORISH, R.A.C. (1978). Exposure-Rate Calibration of Small Radioactive Sources of ⁶⁰Co, ²²⁶Ra, and ¹³⁷Cs. Journal of Appl. Rad. and Isotopes, Vol. 29, 1978, pp 21-27.
- 4) CHILTON, A.B., and HUDDLESTON, C.M. (1963). A Semiemperical Formula for Differential Dose Albedo for Gamma Rays on Concrete. Nuclear Science and Engineering, 17, 1963, pp 419-424.

Participant list

Name		<u>Institute</u>	Country		
T	Lamba ENEL Laboratorio Applicationi di				
		Dosimetria	Ttalv		
т	Sormonahi	*	n n		
1.	Sermengni				
υ.	lauterbach	PTB, PhysikalTechn. Bundesanstalt	w-Germany		
W.	Pessara				
В.	Burgkhardt	Kernforschungszentrum, Karlsruhe	•		
M.	Hauser	•	•		
т.	Reddmann				
J.	David	Gesellschaft für Strahlen-			
		und Umweltforschung			
U.	Nahrstedt	•			
w.	Slegers	SCK-CEN, Mol	Belgium		
F.	van Mierlo	-			
s.	Lorrain	CEN-FAR, Commiss. á l'Energie Atom.	France		
J.	Bordy	n			
I.	Thompson	CEGB, Central Elect. Generat. Board	United Kingdom		
w.	Iles	NRPB, Nat. Radiological Prot. Board	•		
Т.	Bigard	CEC, Direction Santé et Sécurité	Luxembourg		
J.	Witzani	ÖFZS, Inst. für Strahlenschutz	Austria		
c.	Strachotinsky	•			
K.	Ennow	National Inst. of Radiation Hygiene	Denmark		
L.	Bøtter-Jensen	Risø National Laboratory	•		
s.	Nielsen	#	7		

APPENDIX

.

Tables and histograms of measurement results

Table A1. Results of calibration measurements.

INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 1 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uk/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	246.74 149.90 102.74	64.17 182.57 48.29 101.61 37.88 64.86 : SD (uR/h)
3 METRES 4 METRES 5 METRES	0.65 0.21 0.21	0.19 0.68 0.26 0.33 0.12 0.24
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 1 : IONISATION CHAMBER, RSS-111 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 Metres 10 Metres	210.96 75.92 18.71	181.73 93.16 65.93 34.39 16.17 8.38 : SD (uR/h)
3 METRES 5 Metres 10 Metres	0.69 0.34 0.19	0.59 0.40 0.31 0.34 0.34 0.26
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	WO SH.	: 2 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	246.50 149.40 103.20	64.80 181.70 48.80 100.60 38.90 64.30
3 METRES 4 METRES 5 METRES	0.40 0.50 0.40	0.40 0.60 0.20 0.50 0.30 0.50
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 2 : IONISATION CHAMBER, RSS-111 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	207.60 75.50 18.70	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3 METRES 5 METRES 10 METRES	1.60 0.30 0.20	1.60 0.40 0.30 0.30 0.20 0.10

INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 3 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES 3 METRES 4 METRES 5 METRES	245.80 149.60 102.70 0.40 0.50 0.30	65.00 180.80 48.90 100.70 39.30 63.40 : SD (uR/h) 0.50 0.60 0.20 0.50 0.10 0.30
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 3 : IONISATION CHAMBER, RSS-111 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES 3 METRES 5 METRES 10 METRES	204.20 75.20 18.60 1.20 0.30 0.10	175.80 90.30 65.10 33.70 16.30 8.30 : SD (uR/h) 1.20 0.40 0.30 0.20 0.10 0.10
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	WO SH.	: 4 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES 3 METRES 4 METRES 5 METRES	245.42 150.71 105.30 1.18 0.86 0.68	65.41 180.01 49.90 100.81 41.01 64.29 : SD (uR/h) 0.45 1.26 0.51 1.00 0.46 0.82
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 4 : IONISATION CHAMBER, RSS-111 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	204.54 75.68 18.91	176.71 90.20 64.89 34.20 16.62 8.60
3 METRES 5 Metres 10 Metres	1.01 0.81 0.66	1.61 0.93 1.26 0.68 0.66 0.54

INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 5 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
4 METRES	149.02	48.17 100.85
5 METRES	102.87	38.92 63.95
I METDES	1 04	: SD (uK/h)
5 METRES	0.77	0.47 0.90
INSTRUMENT NUMBER		: 5
INSTRUMENT TYPE		: IONISATION CHAMBER, RSS-111
MEASUREMENT	CS137	$\frac{1}{1000} = \frac{1}{1000} + 1$
		COOD AREED
3 METRES		93.72
5 METRES	77.01	
IU METRES	19.20	10.05 0.40 • SD (uR/h)
3 METRES		0.91
5 METRES	0.75	0.97 0.75
10 METRES	0.60	0.70 0.62
INSTRUMENT NUMBER		: 6
INSTRUMENT TYPE		: IONISATION CHAMBER, RSS-111
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WU SH.	W SH. DIFF.
3 METRES	252.74	67.14 185.60
4 METRES	154.44	51.16 103.28
5 METRES	107.72	42.20 05.40 • SD (1)P(b)
3 METRES	0,10	0.05 0.11
4 METRES	0.09	0.05 0.10
5 METRES	0.08	0.05 0.09
INSTRUMENT NUMBER		• 6
INSTRUMENT TYPE		: IONISATION CHAMBER. RSS-111
MEASUREMENT		: FREE FIELD, RESULTS (uR/h)
	CS137	CO60 RA226
3 METRES	212.78	183.21 94.32
5 METRES	78.04	66.77 34.65
10 METRES	19.14	16.67 8.35
2 METRES	0 10	SD(uR/h)
5 METRES	0.06	0.07 0.04
10 METRES	0.04	0.04 0.03

.

INSTRUMENT NUMBER Instrument type Measurement		: 7 : IONISATION CHAMBER, RSS-111 : SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
3 METRES	254.30	67.30 187.00
4 METRES	155.10	51.30 103.80
5 METRES	108.10	41.70 66.40
		: SD (uR/h)
3 METRES	0.60	0.70 0.90
4 METRES	0.30	0.30 0.40
5 METRES	0.30	0.10 0.30
INSTRUMENT NUMBER		: 8
INSTRUMENT TYPE		: IONISATION CHAMBER. Centronic:
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
		+)
3 METRES	192.20	51.10 141.10
4 METRES	117.10	31.10 86.00
5 METRES	78.00	24.20 53.80
TNCTDIMENT NUMBED		. 8
INSTRUMENT TYPE		• IONISATION CHAMBER, Centronic
MFASIIREMENT		• EREF FIFID RESULTS (uR/h)
	CS137	CO60 RA226
3 METRES	201.80	177.54 89.58
5 METRES	76.86	67.62 34.37
10 METRES	19.50	17.70 9.18
INSTRUMENT NUMBER		: 9
INSTRUMENT TYPE		: IONISATION CHAMBER, LS10-120
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIPF.
3 METRES	249.90	63.00 186.90
4 METRES	152.40	48.20 104.20
5 METRES	105.40	39.50 65.90
		s SD (uR/h)
3 METRES	1.30	0.90 1.60
4 METRES	1.80	1.30 2.20
5 METRES	1.00	1.60 1.90

+) Inadequate shielding, see discussion in Section 5.2

INSTRUMENT NUMBER Instrument Type Measurement	00400	: 10 : IONISATION CHAMBER, LS120-08 : FREE FIELD, RESULTS (uR/h)
	CS137	CU60 RA226
3 METRES	215.10	185.70 89.60
5 METRES	77.50	65.70 32.70
10 METRES	18.90	16.40 8.10
2 MERDER	0 10	: SD(uR/h)
J MEIRES 5 METRES	0.40	0.20 0.20 0.40
10 METRES	0.20	0.20 0.50
INSTRUMENT NUMBER		• 11
INSTRUMENT TYPE		PLASTIC SCINT MAB604.1
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
3 METRES	273.46	56.97 216.49
4 METRES	165.01	44.44 120.58
5 METRES	112.40	35.82 76.59
0 100000		: SD (uR/h)
3 METRES	0.97	
4 MEIRES 5 METRES	0.10	0.34 0.76
J 11011100	0.00	
INSTRUMENT NUMBER		• 11
INSTRUMENT TYPE		PLASTIC SCINT. MAB604.1
MEASUREMENT		: FREE FIELD, RESULTS (uR/h)
	CS137	CO60 RA226
3 METRES	237.27	210.26 105.74
5 METRES	85.12	75.78 39.79
10 METRES	20.51	18.59 10.15
3 MP#020	a 60	: SD(uR/h)
J MEIRES 5 METRES	0.50	
10 METRES	0.17	0.26 0.34
INSTRUMENT NUMBER		• 12
INSTRUMENT TYPE		PLASTIC SCINT., MAB604.1
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
3 METRES	239.80	57.00 182.80
4 METRES	147.50	43.40 104.10
5 METRES	97,90	32.50 65.40
0 W00000	•	s SD (uR/h)
3 METKES	0.24	0.08 0.25
4 MEIRES 5 Metres	0.15	
J MEINEQ	0.12	

INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 12 : PLASTIC SCINT., MAB604.1 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	208.50 73.60 17.80	171.30 84.90 60.80 31.90 15.10 7.53 : SD (uR/h)
3 METRES 5 Metres 10 Metres	0.24 0.13 0.10	0.32 0.17 0.20 0.13 0.10 0.10
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	WO SH.	: 13 : PLASTIC SCINT., MAB604.1 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	252.00 154.50 103.70	57.70 194.30 43.90 110.60 35.90 67.80 : SD (uR/h)
3 METRES 4 METRES 5 METRES	0.75 2.50 1.00	0.85 1.13 0.35 2.52 0.25 1.03
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 13 : PLASTIC SCINT., MAB604.1 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	208.70 79.90 19.30	179.40 89.40 69.10 34.00 17.00 8.60 : SD (uR/h)
3 METRES 5 METRES 10 METRES	2.50 0.80 0.45	1.00 0.90 0.35 0.50 0.45 0.15
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	WO SH.	: 14 : PLASTIC SCINT., MAB604.1 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	235.20 143.44 98.18	56.59 178.61 42.19 101.25 33.75 64.43 : SD (uR/h)
3 METRES 4 METRES	0.96 0.94	0.54 1.10 0.40 1.02

INSTRUMENT NUMBER Instrument type Measurement	CS137	: 14 : PLASTIC SCINT., MAB604.1 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 Metres 10 Metres	205.98 79.04 19.95	165.44 85.12 63.20 31.50 15.78 8.18 : SD (uR/h)
3 METRES 5 Metres 10 Metres	0.40 0.35 0.28	0.48 0.41 0.32 0.22 0.27 0.33
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	WO SH.	: 15 : PLASTIC SCINT., H7907 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	254.90 155.93 108.13	60.37 194.53 46.64 109.29 38.64 69.49 : SD (uR/h)
3 METRES 4 METRES 5 METRES	0.88 0.96 0.86	0.30 0.93 1.09 1.45 0.32 0.92
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 15 : PLASTIC SCINT., H7907 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	2 17.38 80.21	200.01 101.73 75.87 36.86
3 METRES 5 METRES 10 METRES	1.05 0.62	: SD (uR/h) 1.55 1.03 0.69 0.30
INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 16 : PLASTIC SCINT., H7201/10 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 Metres 5 Metres	241.96 147.41 103.96	55.87 186.08 44.07 103.34 37.07 66.49
3 METRES 4 Metres 5 Metres	1.19 0.98 0.57	0.80 1.40 0.79 1.26 0.45 0.73

INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT		: 16 : PLASTIC SCINT., H7201/10 : FREE FIELD, RESULTS (uR/b)
	CS 1 37	CO60 RA226
3 METRES	211.47	193.25 97.03
5 METRES	78.44	72.25 35.93
10 METRES	19.45	18.44 9.08
3 METRES	1.38	1.45 1.38
5 METRES	0.68	0.65 0.62
10 METRES	0.55	0.39 0.37
INSTRUMENT NUMBER		: 17
INSTRUMENT TYPE		: PLASTIC SCINT., GAMMAM. 2414
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
3 METRES	225.00	55.00 170.00
4 METRES	148.00	48.00 100.00
5 METRES	106.00	35.00 71.00
	0	: SD (uR/h)
J METRES	8.00	
J MEIRES	3.00	
IN HEINES	2.00	1.30 2.50
INSTRUMENT NUMBER		: 17
INSTRUMENT TYPE		: PLASTIC SCINT., GAMMAM. 2414
MEASUREMENT		: FREE FIELD, RESULTS (uR/h)
	CS137	C060 RA226
3 METRES	204.00	189.00 114.00
5 METRES	74.00	69.00 44.00
10 METRES	21.00	19.00 11.00
2 WD 80 8 4	~ ~ ~	: SD (uR/h)
J METRES	2.00	
J MEIRES	1.00	
IV HEIRES	1.00	1.00
INSTRUMENT NUMBER		: 18
INSTRUMENT TYPE		: PLASTIC SCINT., SCINTOM. 6134/
MEASUREMENT		: SHADOW SHIELD, RESULTS (uR/h)
	WO SH.	W SH. DIFF.
3 METRES	239.30	51.70 187.60
4 METRES	145.20	39.40 105.80
) METKES	100.20	52.40 07.80 - CD (118/h)
2 MPTPPP	9	
J MEINEJ L METRES	0.00	0 20 2 00
5 METRES	1.50	0.20 1.00

INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT		: 18 : PLASTIC SCINT., SCINTOM. 6134A : FREE FIELD, RESULTS (uR/h)
	CS137	C060 RA226
3 METRES	208.50	182.80 91.50
5 METRES	78.90	66.80 33.20
10 METRES	19.50	16.40 8.10
2 METRES	0 20	(uk/n)
5 METRES	0.15	0.20 0.20
10 METRES	0.20	0.10 0.05
INSTRUMENT NUMBER		: 19
INSTRUMENT TYPE		: GM COUNTER, MC70
MEASUREMENT	U O 90	SHADOW SHIELD, RESULTS (UN/h)
	wo sn.	w Sn. Dirr.
3 METRES	237.90	55.20 182.80
4 METRES	146.00	42.50 103.40
5 METRES	99.40	36.70 62.70
3 METRES	1.80	0.80 2.00
4 METRES	1.40	0.70 1.60
5 METRES	1.60	1.00 1.90
INSTRUMENT NUMBER		: 19
INSTRUMENT TYPE		: GM COUNTER, MC70
MEASUREMENT	CS137	$\frac{1}{1000} = \frac{1}{1000} + 1$
3 METRES	198.80	219.00 105.70
5 METRES	74.20	83.20 39.80
IU MEIRES	10.00	21.00 9.90 • SD (uR/b)
3 METRES	1.30	1.50 1.00
5 METRES	0.90	0.90 0.70
10 METRES	0.40	0.40 0.30
INSTRUMENT NUMBER		: 20
INSTRUMENT TYPE		: GM COUNTER, MC70, CM S003
MERSUREMENI	CS137	CO60 RA226
3 METRES	199.30	177.20 93.40
5 METRES	74.20	66.80 34.70
10 METRES	17.90	16.70 9.10
3 MR#320	43 55	: SD (uR/h)
5 METRES 5 Metres	13.55	
	8 50	4.28 2.74

INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	: 21 : GM COUNTER, MC70, CM S009 : SHADOW SHIELD, RESULTS (uR/h) DIFF.)
3 METRES 4 Metres 5 Metres	184.56 103.43 64.54 : SD (uR/h)	
3 METRES 4 Metres 5 Metres	4.06 2.38 3.87	
INSTRUMENT NUMBER Instrument type Measurement	: 21 : GM COUNTER, MC70, CM S009 : FREE FIELD, RESULTS (uR/h) CS137 CO60 RA226	
3 METRES 5 Metres 10 Metres	198.00 177.30 93.40 74.80 65.00 33.50 17.50 16.50 7.40	
3 METRES 5 Metres 10 Metres	14.65 12.94 6.91 2.92 2.80 1.07 1.33 1.20 0.62	
INSTRUMENT NUMBER Instrument type Measurement	: 22 : GM COUNTER, MC70, MINI6/80 : SHADOW SHIELD, RESULTS (uR/h DIFF.)
3 METRES 4 Metres 5 Metres	191.88 102.86 67.19 : SD (uR/h)	
3 METRES 4 Metres 5 Metres	2.69 2.16 1.88	
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	: 22 : GM COUNTER, MC70, MINI6/80 : FREE FIELD, RESULTS (uR/h) CS137 CO60 RA226	
3 METRES 5 METRES 10 METRES	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3 METRES 5 Metres 10 Metres	3.56 3.45 2.08 1.64 1.40 0.55 0.33 0.40 0.22	

INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 23 : GM COUNTER, MC71 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	243.80 150.63 104.72	56.30 187.50 46.02 104.60 38.69 66.00
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 23 : GM COUNTER, MC71 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	211.60 75.90 19.18	187.60 89.30 67.00 31.60 17.10 7.63
INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: 24 : GM COUNTER, BZ120 : SHADOW SHIELD, RESULTS (uR/h) W SH. DIFF.
3 METRES 4 METRES 5 METRES	244.80 149.60 105.30	50.30 194.50 40.70 108.90 35.20 70.10 : SD (uR/h)
3 METRES 4 METRES 5 METRES	0.85 0.70 0.47	0.49 0.98 0.57 0.90 0.37 0.60
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: 24 : GM CCUNTER, BZ120 : FREE FIELD, RESULTS (uR/h) CO60 RA226
3 METRES 5 METRES 10 METRES	212.50 77.30 18.60	252.70 118.50 91.20 43.00 23.50 10.50 : SD (uR/h)
3 METRES 5 METRES 10 METRES	1.51 1.38 0.81	2.86 1.26 0.97 0.70 0.74 0.60

.

INSTRUMENT NUMBER Instrument type Measurement	WO SH.	: : PROP : SHAD W SH.	25 ORTIONAL COUNTER, LB6123 OW SHIELD, RESULTS (uR/h) DIFF.
3 METRES	247.60	60.30	187.30
4 METRES	151.90	48.60	103.30
5 METRES	107.50	40.70	66.80
		: SD (uR/h)
3 METRES	0.78	0.44	0.90
4 METRES	0.71	0.40	0.81
5 METRES	0.64	0.47	0.79
INSTRUMENT NUMBER Instrument type		: : PROP	25 ORTIONAL COUNTER, LB6123
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT		: : PROP : FREE	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h)
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT	CS137	: : PROP : FREE CO60	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT 3 METRES	CS137 208.20	: : PROP : FREE CO60 237.00	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT 3 METRES 5 METRES	CS137 208.20 77.70	: : PROP : FREE CO60 237.00 87.10	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00 40.80
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT 3 METRES 5 METRES 10 METRES	CS137 208.20 77.70 19.00	: : PROP : FREE CO60 237.00 87.10 21.90	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00 40.80 10.30
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT 3 METRES 5 METRES 10 METRES	CS137 208.20 77.70 19.00	: : PROP : FREE CO60 237.00 87.10 21.90 : SD (25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00 40.80 10.30 uR/h)
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMENT 3 METRES 5 METRES 10 METRES 3 METRES	CS137 208.20 77.70 19.00 2.04	: : PROP : FREE CO60 237.00 87.10 21.90 : SD (1.78	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00 40.80 10.30 uR/h) 1.16
INSTRUMENT NUMBER INSTRUMENT TYPE MEASUREMEPT 3 METRES 5 METRES 10 METRES 5 METRES 5 METRES 5 METRES	CS137 208.20 77.70 19.00 2.04 1.01	: : PROP : FREE CO60 237.00 87.10 21.90 : SD (1.78 1.13	25 ORTIONAL COUNTER, LB6123 FIELD, RESULTS (uR/h) RA226 112.00 40.80 10.30 uR/h) 1.16 0.97

		~~~~~~~~
Instrument no.	Nat.bgr. (uR/h)	sd (uR/h)
1	7.00	0.09
2	7.80	0.10
3	7.70	0.15
4	7.48	0.40
5	7.40	0.40
6	7.82	0.01
8	5,90	
10	7.80	0.40
11	6.26	0.15
12	5 51	0 10
13	6.00	0.19
12	5 10	0.10
15	9 02	0.01
16	0.UZ	0.20
10	1.54	0.49
	0.00	1.00
18	6.63	0.03
19	8.60	0.15
20	7.50	0.47
21	7.70	0.56
22	7.10	0.11
23	7.10	
24	12.00	0.50
25	10.90	0.40

Instrument no. Cosmic sd (uR/h) (uR/h)	i
	/h)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 07 04 53 57 02 30 36 08 08 08 08 10 26 07 30 02 10 39 34

٠

# Table A3. Results of cosmic-component measurements.

Instrument	no. Terr.comp. (uR/h)
1 2 3 4 5 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	3.50 3.52 3.57 3.41 3.69 3.46 2.40 3.90 3.79 3.65 3.70 3.26 3.65 3.66 3.57 3.60 3.49 4.30 3.555 3.66 3.20 3.40 4.25 4.13

	Shadow-shield measurements			Free-field measurements			
Detector No., type	Distance (m) 137 _{Cs}		Dista (m)	ance 137 _{CS}	60 _{Co}	226 _{Ra}	
1	3	0.9863±0.0050	3	1.0118±0.0138	1.0130±0.0104	1.0017±0.0120	
Ionisation cham-	4	0.9846*0.0043	5	0.9847±0.0162	0.9959±0.0121	1.0026±0.0168	
ber, RSS-111	5	0.9917±0.0046	10	0.9595±0.0218	0.9568±0.0251	0.9621±0.0347	
	Mean	0.9875±0.0027(ns)	Mean	0.9927±0.0094(ns)	1.0014±0.0075(ns)	0.9991±0.0094(ns)	
2	3	0.9816±0.0047	3	0.9957±0.0152	0.9972±0.0132	0.9860±0.0119	
Ionisation cham-	4	0.9748±0.0056	5	0.9792±0.0160	$0.9849 \pm 0.0119$	0.9825±0.0159	
ber, RSS-111	5	0.9832±0.0081	10	0.9590±0.0220	0.9645±0.0191	0.9529±0.0210	
	Mean	0.9796±0.0033(ns)	Mean	0.9821±0.0098(ns)	0.9859±0.0080(ns)	0.9793±0.0087(ns)	
3	3	0.9768±0.0046	3	0.9794±0.0142	0.9799±0.0116	0.9710±0.0117	
Ionisation cham-	4	0,9758±0,0056	5	0,9754±0,0159	$0.9834\pm0.0119$	$0.9825 \pm 0.0145$	
ber, RSS-111	5	0,9694±0,0053	10	0.9538±0.0200	0.9645±0.0162	0.9529±0.0210	
	Mean	0.9742±0.0030(ns)	Mean	0.9724±0.0093(ns)	0.9730±0.0074(ns)	0.9719±0.0083(ns)	

Table A5. Ratios of measured-to-nominal values of exposure rates for the two calibration methods.

•

Shadow	-shield measurements	Free-field measurements					
Distan	<u></u>	Distance					
(m)	137 _{Cs}	(m)	137 _{Cs}	60 _{Co}	226 _{Ra}		
3	0.9725±0.0076	3	0.9810±0.0138	0.9850±0.0131	0.9699±0.0148		
4	0.9768±0.0101	5	0,9816±0,0187	0.9802±0.0220	0.9971±0.0240		
5	0.9830±0.0128	10	0.9697±0.0392	0.9834±0.0420	0.9874±0.0646		
Mean	0.9757±0.0055(ns)	Mean	0.9804±0.0107(+)	0.9837±0.0109(+)	0.9777±0.0123(ns)		
٦		٦			1.0077±0.0149		
4	0.9772±0.0111	5	0.9988±0.0185	1,0021±0,0185	$0.9991\pm0.0257$		
5	$0.9778\pm0.0140$	10	0.9846±0.0367	$0.9852\pm0.0442$	$0.9713 \pm 0.0734$		
-							
Mean	0.9774±0.0087(+)	Mean	0.9959±0.0165(ns)	0.9996±0.0171(ns)	1.0045±0.0127(ns)		
2	1 0007+0 0035	2	1 0005+0 0135		1 0142+0 0114		
3		3			$1.0142 \pm 0.0114$		
4		5					
5	1.0003.0.0031	10	0.9815-0.0200	0.9004-0.0130	0.938/20.0180		
Mean	1.0014±0.0018(ns)	Mean	1.0096±0.0092(ns)	1.0103±0.0067(ns)	1.0022±0.0079(*)		
	1 0103+0 0060						
А.	1.0158+0.0049						
5	1 0153+0 0054						
J	1.0133-0.0034						
Mean	1.0101±0.0031(ns)			***			
2	0.7(2)	-	0.0670	0.0006	0.0633		
3	U./D23	3 F		U.2090	1 0020		
4) E	V.0333 N 9336	201	1 0000	1 0473	1.0020		
3	0.0440	TO	1.0000	T.04/3	T + O J # O		
Mean	0.8061±0.0221 a)	Mean	0.9883±0.0102	1.0195±0.0167	1.0064±0.0263		
	Shadow Distan (m) 3 4 5 Mean 3 4 5 Mean 3 4 5 Mean 3 4 5 Mean 3 4 5 Mean 3 4 5 Mean	$\frac{\text{Shadow-shield measurements}}{\text{(m)}} \frac{137}{\text{Cs}}$ $\frac{3}{3} 0.9725 \pm 0.0076}{4} 0.9768 \pm 0.0101}{5} 0.9830 \pm 0.0128}$ $\frac{\text{Mean}}{15} 0.9757 \pm 0.0055(\text{ns})}$ $\frac{3}{4} 0.9772 \pm 0.0111}{5} 0.9778 \pm 0.0140}$ $\frac{3}{1.0027 \pm 0.0087(+)}$ $\frac{3}{1.0008 \pm 0.0031}{5} 1.0009 \pm 0.0031}$ $\frac{3}{1.0103 \pm 0.0060}{4} 1.0058 \pm 0.0049}{5} 1.0153 \pm 0.0054}$ $\frac{3}{1.0101 \pm 0.0031(\text{ns})}$ $\frac{3}{1.0101 \pm 0.0031(\text{ns})}$ $\frac{3}{1.0101 \pm 0.0031(\text{ns})}$ $\frac{3}{1.0101 \pm 0.0031(\text{ns})}$ $\frac{3}{1.010221} 0.00221 \text{ a}$	Shadow-shield measurementsDistance (m)Distance (m)3 $0.9725\pm0.0076$ 34 $0.9768\pm0.0101$ 55 $0.9830\pm0.0128$ 10Mean $0.9757\pm0.0055(ns)$ Mean3 $0.9772\pm0.0111$ 55 $0.9778\pm0.0140$ 10Mean $0.9774\pm0.0087(+)$ Mean3 $1.0027\pm0.0035$ 34 $1.0008\pm0.0031$ 55 $1.0009\pm0.0031$ 10Mean $1.0014\pm0.0018(ns)$ Mean3 $1.0103\pm0.0060$ 44 $0.058\pm0.0049$ 55 $1.0153\pm0.0054$ Mean3 $0.7623$ 34 $0.8333$ 55 $0.8226$ 10Mean $0.8061\pm0.0221$ Mean	Shadow-shield measurements         Free-           Distance (m)         137Cs         Distance (m)         137Cs           3         0.9725±0.0076         3         0.9810±0.0138           4         0.9768±0.0101         5         0.9816±0.0187           5         0.9830±0.0128         10         0.9697±0.0392           Mean         0.9757±0.0055(ns)         Mean         0.9804±0.0107(+)           3         3         4         0.9772±0.0111         5         0.9988±0.0185           5         0.9778±0.0140         10         0.9846±0.0367         Mean         0.9959±0.0165(ns)           4         0.9774±0.0087(+)         Mean         0.9959±0.0165(ns)         1.0122±0.0160           3         1.0027±0.0035         3         1.0205±0.0135         1.0122±0.0160           5         1.0009±0.0031         10         0.9815±0.0200         Mean           Mean         1.0014±0.0018(ns)         Mean         1.0096±0.0092(ns)           3         1.0103±0.0060         4         1.0058±0.0054           Mean         1.0101±0.0031(ns)         3         0.9679           3         0.7623         3         0.9969           5         0.8226         10         <	Shadow-shield measurements         Free-field measurements           Distance (m)         137 Cs         Distance (m)         137 Cs         60 Co           3         0.9725±0.0076         3         0.9810±0.0138         0.9850±0.0220           4         0.9768±0.0101         5         0.9816±0.0187         0.9802±0.0220           5         0.9830±0.0128         10         0.9602±0.0220         0.9834±0.0420           Mean         0.9757±0.0055(ns)         Mean         0.9804±0.0107(+)         0.9837±0.0109(+)           3         4         0.9772±0.0111         5         0.9988±0.0185         1.0021±0.0185           5         0.9778±0.0140         10         0.9846±0.0367         0.9852±0.0442           Mean         0.9774±0.0087(+)         Mean         0.9955±0.0165(ns)         0.9996±0.0171(ns)           3         1.0027±0.0035         3         1.0225±0.0135         1.0212±0.0099           4         1.0008±0.0031         5         1.0122±0.0160         1.0086±0.0113           5         1.0009±0.0031         10         0.9815±0.0200         0.9864±0.0156           Mean         1.0103±0.0066         4         1.003±0.0067(ns)           3         0.7623         3         0.9679         0.9		

a) Inadequate shielding, see discussion in Section 5.2.

	Shadow-shield measurements		Free-field measurements				
Detector No., type	Distan (m)	137 _{CS}	Distanc (m)	e 137 _{Cs}	60 _{Co}	226 _{Ra}	
y Ionisation cham- ber, LS 10-120	3 4 5	1.0097±0.0093 1.0097±0.0215 1.0076±0.0292	<u></u>				
	Mean	1.0096±0.0082(++)					
l0 Ionisation cham- ber, LS 120-08			3 5 10	1.0317±0.0138 1.0052±0.0197 0.9692±0.0222	1.0351±0.0101 0.9924±0.0127 0.9704±0.0192	0.9634±0.0110 0.9534±0.0174 0.9300±0.0599	
			Mean	1.0120±0.0101(n=)	1.0116±0.0073(**)	0.9598±0.0092(n=)	
ll Scintillation detector, MAB 604.1	3 4 5	1.1696±0.0068 1.1684±0.0036 1.1711±0.0121	3 5 10 Mean	1.1380±0.0153 1.1040±0.0177 1.0518±0.0231	1.1720±0.0128 1.1447±0.0147 1.1000±0.0230	1.1370±0.0131 1.1601±0.0214 1.1653±0.0445	
		******************					
12 Scintillation detector, NAB 604.1	3 4 5 Ne an	0.9876±0.0036 1.0087±0.0034 1.0000±0.0034 0.9993±0.0020(***)	3 5 10 Mean	1.0000±0.0133 0.9546±0.0152 0.9128±0.0192 0.9660±0.0089(***	0.9548±0.0094 0.9184±0.0107 0.8935±0.0151 )0.9308±0.0064(**)	0.9129±0.0104 0.9300±0.0131 0.8645±0.0196 0.9114±0.0075(*)	
13 Scintillation detector,	3 4 5	1.0497±0.0071 1.0717±0.0246 1.0367±0.0160	3 5 10	1.0010±0.0178 1.0363±0.0194 0.9897±0.0306	1.0000±0.0112 1.0438±0.0128 1.0059±0.0309	0.9613±0.0145 0.9913±0.0198 0.9874±0.0250	
UND 004.1	Mean	1.0491±0.0063(ns)	Mean	1.0129*0.0121(ns)	1.0180±0.0081(*)	0,9745±0,0106(ns)	

1

	Shadow-shield measurements Distance		Free-field measurements			
Detector No., type			Dista	Distance		
	(m)	137 _{Cs}	(m)	137 _{Cs}	60 _{Co}	226 _{Ra}
14	3	0.9649±0.0068	3	0.9879±0.0132	0.9222±0.0093	0.9153±0.0112
Scintillation	4	0.9811±0.0103	5	$1.0252 \pm 0.0168$	0.9547±0.0117	$0.9184 \pm 0.0140$
detector,	5	0.9852±0.0113	10	1.0231±0.0252	0.9337±0.0216	0.9392±0,0416
MAB 604.1	Mean	0.9729±0.0051(ns)	Mean	1.0051±0.0096(ns)	0.9347±0.0069(ns)	0.9174±0.0085(ns)
15	3	1.0509±0.0062	3	1.0426±0.0147	1.1149±0.0138	1.0939±0.0165
Scintillation	4	1.0590±0.0144	5	1.0403±0.0183	1.1461±0.0165	1.0746±0.0169
detector,	5	1.0625±0.0144	10			
n /90/	Mean	1.0536±0.0053(ns)	Mean	1.0417±0.0115(ns)	1.1277±0.0106(ns)	1.0845±0.0118(ns)
	-		•			
10 Saintillation	3	1.0014+0.0125	5	1.0142=0.0149	$1 \cdot 0 / / 2 \pm 0 \cdot 0 1 3 2$	1.0433=0.0189
detector, H 7201/10	5	1.0167±0.0115	10	0.9974±0.0347	1.0911±0.0287	1.0425±0.0466
	Mean	1.0074±0.0059(ns)	Mean	1.0137±0.0110(ns)	1.0840±0.0095(ns)	1.0448±0,0139(+)
)7	3	0 0194+0 0422	2	0 9794+0 0161	1 0535+0 0151	1 2250+0 0255
Scintillation	4	0.9690±0.0292	5	$0.9598\pm0.0200$	$1.0423\pm0.0191$	1,2236±0,0233
detector,	5	1.0856±0.0383	10	1.0769±0.0557	1.1243±0.0617	1.2629±0.1171
Gammameter 2414						
	Mean	0.9910±0.0205(**)	Mean	0.9762±0.0122(ns)	1.0519±0.0116(ns)	1.2469±0.0201(ns)
18	3	1.0135±0.0219	7	1.0000+0.0132	1.0190±0.0099	0.9839*0 0112
Scintillation	4	$1.0252\pm0.0149$	5	1.0233±0.0163	$1.0091\pm0.0117$	$0.9679\pm0.0143$
detector,	5	1.0367±0.0120	10	1.0000±0.0227	0.9704±0.0163	0.9300±0.0180
SCITICOMAE DI34A	Mean	1.0293±0.0086(ns)	Mean	1.0077±0.0094(ns)	1.0069±0.0069(*)	0.9686±0.0079(*)

.

Detector		Shadow-shield measurements		Free-field measurements			
				Diet			
	et cibe	(m)	137 _{Cs}	(m)	137 _{Cs}	60 _{CO}	226 _{Ra}
	19	3	0.9876±0.0113	3	0.9535±0.0140	1.2207±0.0145	1.1366±0.0167
GM	counter,	4	1.0019±0.0158	5	0.9624±0.0192	1.2568±0.0196	1.1603±0.0257
MC	70	5	0.9587±0.0292	10	0.9231±0.0278	1.2426±0.0305	1.1366±0.0403
		Mean	0.9894±0.0088(ns)	Mean	0.9518±0.0105(ns)	1.2347±0.0109(ns)	1.1428±0.0132(ns)
	20			3	0.9559±0.0662	0,9877±0,0669	1.0043±0.0722
GM	counter.			5	0.9624±0.0616	$1.0091 \pm 0.0656$	1.0117±0.0810
MC	70			10	0.9179±0.0663	0.9882±0.0640	1.0448±0.0838
				Mean	0.9463±0.0373(ns)	0.9950±0.0378(+)	1.0185±0.0453(ns)
	21	3	0.9971±0.0222	3	0.9496±0.0714	0.9883±0.0728	1.0043±0.0751
GN	counter,	4	1.0022±0.0232	5	0.9702±0.0409	0.9819±0.0437	0.9767±0.0339
MC	70	5	0.9869±0.0592	10	0.8974±0.0706	0.9763±0.0726	0.8496±0.0729
		Mean	0.9987±0.0155(+)	Mean	0.9515±0.0317(ns)	0.9821±0.0333(++)	0.9613±0.0284(ns
	22	3	1 0366+0 0150	Э	1 0058+0 0216	1 0111+0 0216	1 0172+0 0251
GN	counter.	ر ۸	0.9967+0.0211	5	1.0130+0.0266	1 0076+0 0240	1.0172 - 0.0231 1.0087+0.0210
MC	70	5	1.0274±0.0289	10	0.9897±0.0263	0.9763±0.0281	0.9759±0.0310
		Mean	1.0239±0.0112(ns)	Mean	1.0032±0.0141(ns)	1.0014±0.0139(ns)	1.0045±0.0143(ns)
	23	ч	1.0130	э	1.0149	1.0457	0 9602
GM	counter.		1.0136	5	0.9844	1.0121	0.9213
MC	71	5	1.0092	10	0.9836	1.0118	0.8760
		Mean	1.0119±0.0014	Mean	0.9943±0.0103	1.0232±0.0113	0.9192±0.0243

•

ł

	Shadow-shield measurements		9	Free-field measurements				
No., type	Distand (m)	се 137 _{Св}	Dist (m)	ance 137 _{Cs}	60 _{Co}	226 _{Ra}		
24 GN counter, BI 120	3 4 5	1.0508±0.0064 1.0552±0.0092	3 5 10	1.0192±0.0153 1.0026±0.0239 0.9538±0.0458	1.4086±0.0210 1.3776±0.0213 1.3905±0.0489	1.2742±0.0197 1.2536±0.0265 1.2555+0.0724		
	Mean	1.0567±0.0046(ns)	Mean	1.0099±0.0124(ns)	1.3931±0.0143(ns)	1.2641±0.0154(ns)		
25 Proportional counter,	3 4 5	1.0119±0.0060 1.0010±0.0084 1.0214±0.0124	3 5 10	0.9986±0.0164 1.0078±0.0206 0.9744±0.0460	1.3211±0.0162 1.3157±0.0226 1.2959±0.0504	1.2043±0.0184 1.1895±0.0325 1.1825±0.0755		
PD 0153	Mean	1.0100±0.0045(ns)	Mean	1.0001±0.0124(ns)	1.3178±0.0127(nm)	1.1999±0.0156(ns)		



Fig. A1. Results of shadow-shield experiments with the ¹³⁷Cs source.



### Free field, Cs137

Fig. A2. Results of free-field experiments with the 137Cs source.

µR/h

51

22 -23

 $\mathbf{2}$ 

0 3

14 15 16 17 18 19 20 90









Fig. A5. Natural-background results.



Fig. A6. Cosmic-component results.



Fig. A7. Terrestrial-component results.

# **Riss National Laboratory**

1 11 1 1

:

Y	Title and author(s)	^{Date} November 1985
<b>7</b> <b>7</b>		Department or group
-	A MULTI-LABORATORY TESTING OF CALIBRATION	
X -	METHODS FOR ENVIRONMENTAL DOSE RATE METERS	Health Physics
88		
Ä	Lars Bøtter-Jensen and Sven P. Nielsen	Group's own registration number(s)
	54 pages + tables + illustrations	
	Abstract	Copies to
	Abstract. Calibration experiments were car-	
	ried out at Risø National Laboratory 28-30	
	August 1985 with the aim of testing calibration	
	methods for instruments used for background	
	gamma radiation monitoring.	
	Two calibration methods using certified gamma	
	sources were tested: 1) A shadow-shield cali-	
	bration method, and 2) A freefield calibration	
	set-up. The experiments comprised studies of	
	25 instruments from 11 European laboratories.	
	For most of the instruments the two methods	
	gave identical results. The shadow-shield ca-	
	libration, however, proved to be more accurate.	
	Additional measurements of the natural back-	
	ground and the cosmic component gave useful	
	information on the energy dependency of the	
	detectors.	
	The calibration experiments were sponsored	
	by CEC under contract No. 1244/1/84.	
	Available on request from Risø Library, Risø National	
	DK-4000 Roskilde, Denmark	
	Telephone: (03) 37 12 12, ext. 2262. Telex: 43116	
		1

I.

I.

1