529 research outputs found
Electron correlations and bond-length fluctuations in copper oxides: from Zhang--Rice singlets to correlation bags
We perform first principles, multiconfiguration calculations on clusters
including several CuO octahedra and study the ground-state electron
distribution and electron--lattice couplings when holes are added to the
undoped configuration. We find that the so-called Zhang--Rice state
on a single CuO plaquette is nearly degenerate with a state whose leading
configuration is of the form Cu -- O -- Cu . A strong coupling
between the electronic and nuclear motion gives rise to large inter-site charge
transfer effects for half-breathing displacements of the oxygen ions. Under the
assumption of charge segregation into alternating hole-free and hole-rich
stripes of Goodenough \cite{jbg_02,jbg_03}, our results seem to support the
vibronic mechanism and the traveling charge-density wave model from
Refs.\cite{jbg_02,jbg_03} for the superconductivity in copper oxides.Comment: submitted to Phys. Rev.
Electron correlations and bond-length fluctuations in layered copper oxides: electron versus hole doping
We investigate the nature of the electronic ground state and electron-lattice
couplings for doped chains of CuO_4 plaquettes or CuO_6 octahedra. The undoped
configuration implies here Cu 3d^9 and O 2p^6 formal valence states. The
results of multiconfiguration calculations on 4-plaquette (or 4-octahedra)
linear clusters indicate strong electron-lattice interactions and polaronic
behavior of the doped particles, for both electron and hole doping. For certain
phases of the oxygen-ion half-breathing distortions a multi-well energy
landscape is predicted. Since each well is associated to carriers localized at
different sites, the half-breathing displacements induce charge transfer along
the chain. In the case of hole-doping, the trends found by ab initio
multiconfiguration calculations on 4-octahedra clusters are confirmed by
density-matrix renormalization-group calculations for a p-d, extended Hubbard
model with chains of few tens of CuO_4 plaquettes. Under the assumption of
charge separation and the formation of 1/3-doped stripes, our results seem to
support the vibronic mechanism and the traveling charge-density wave scenario
proposed in some recent contributions for superconductivity in copper oxides.Comment: references added, typos correcte
Cobalt containing glass fibres and their synergistic effect on the HIF-1 pathway for wound healing applications
Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid. Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings
Population pharmacokinetics of ganciclovir after intravenous ganciclovir and oral valganciclovir administration in solid organ transplant patients infected with cytomegalovirus
A population pharmacokinetics analysis was performed after intravenous ganciclovir and oral valganciclovir in solid organ transplant patients with cytomegalovirus. Patients received ganciclovir at 5 mg/kg of body weight (5 days) and then 900 mg of valganciclovir (16 days), both twice daily with dose adjustment for renal function. A total of 382 serum concentrations from days 5 and 15 were analyzed with NONMEM VI. Renal function given by creatinine clearance (CL(CR)) was the most influential covariate in CL. The final pharmacokinetic parameters were as follows: ganciclovir clearance (CL) was 7.49.(CL(CR)/57) liter/h (57 was the mean population value of CL(CR)); the central and peripheral distribution volumes were 31.9 liters and 32.0 liters, respectively; intercompartmental clearance was 10.2 liter/h; the first-order absorption rate constant was 0.895 h(-1); bioavailability was 0.825; and lag time was 0.382 h. The CL(CR) was the best predictor of CL, making dose adjustment by this covariate important to achieve the most efficacious ganciclovir exposure
Surface-controlled reversal of the selectivity of halogen bonds
Intermolecular halogen bonds are ideally suited for designing new molecular assemblies because of their strong directionality and the possibility of tuning the interactions by using different types of halogens or molecular moieties. Due to these unique properties of the halogen bonds, numerous areas of application have recently been identified and are still emerging. Here, we present an approach for controlling the 2D self-assembly process of organic molecules by adsorption to reactive vs. inert metal surfaces. Therewith, the order of halogen bond strengths that is known from gas phase or liquids can be reversed. Our approach relies on adjusting the molecular charge distribution, i.e., the σ-hole, by molecule-substrate interactions. The polarizability of the halogen and the reactiveness of the metal substrate are serving as control parameters. Our results establish the surface as a control knob for tuning molecular assemblies by reversing the selectivity of bonding sites, which is interesting for future applications
Association of Lifestyle Factors With Abdominal Subcutaneous and Visceral Adiposity: The Framingham Heart Study
OBJECTIVE— The purpose of this study was to assess the relationship between lifestyle factors and abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in a community-based setting
Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium
The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.Xunta de Galicia | Ref. ED431B 2016/042Xunta de Galicia | Ref. POS-A/2013/161Xunta de Galicia | Ref. ED481D 2017/010Xunta de Galicia | Ref. ED481B 2016/047-
Krebs von den Lungen-6 glycoprotein circulating levels are not useful as prognostic marker in COVID-19 pneumonia : A large prospective cohort study
Altres ajuts: Departament de Salut, Generalitat de Catalunya (COVID-PoC BioCAT).Coronavirus disease 2019 (COVID-19) has rapidly expanded worldwide. Currently, there are no biomarkers to predict respiratory worsening in patients with mild to moderate COVID-19 pneumonia. Small studies explored the use of Krebs von de Lungen-6 circulating serum levels (sKL-6) as a prognostic biomarker of the worsening of COVID-19 pneumonia. We aimed at a large study to determine the prognostic value of sKL-6 in predicting evolving trends in COVID-19. We prospectively analyzed the characteristics of 836 patients with COVID-19 with mild lung disease on admission. sKL-6 was obtained in all patients at least at baseline and compared among patients with or without respiratory worsening. The receiver operating characteristic curve was used to find the optimal cutoff level. A total of 159 (19%) patients developed respiratory worsening during hospitalization. Baseline sKL-6 levels were not higher in patients who had respiratory worsening (median {IQR} 315.5 {209-469} vs. 306 {214-423} U/ml p = 0.38). The last sKL-6 and the change between baseline and last sKL-6 were higher in the respiratory worsening group (p = 0.02 and p < 0.0001, respectively). The best sKL-6 cutoff point for respiratory worsening was 497 U/ml (area under the curve 0.52; 23% sensitivity and 85% specificity). sKL-6 was not found to be an independent predictor of respiratory worsening. A conditional inference tree (CTREE) was not useful to discriminate patients at risk of worsening. We found that sKL-6 had a low sensibility to predict respiratory worsening in patients with mild-moderate COVID-19 pneumonia and may not be of use to assess the risk of present respiratory worsening in inpatients with COVID-19 pneumonia
Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance
Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aro- matic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol sub- stituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logRe- sistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications
- …