36 research outputs found

    Caracterización genotípica de cepas de Escherichia coli productoras de toxina Shiga en ovinos de Trintrica, San Rafael, Mendoza

    Get PDF
    Las enfermedades transmitidas por alimentos son consideradas la mayor causa de morbi-mortalidad en el mundo. Escherichia coli enterohemorrágica, productor de toxina shiga (STEC), patógeno emergente que contamina alimentos, es valorado como uno de los problemas mayores en salud pública. La inserción de la producción agroalimentaria argentina en los mercados nacionales e internacionales cobra cada vez mayor importancia. Mientras que en la cadena de la carne ovina a nivel nacional y provincial la presencia de STEC es un punto crítico que incide en la competitividad de la misma

    Moleculars biomarkers in pediatric rhabdomyosarcoma: from molecular biology to clinical application

    Get PDF
    El rabdomiosarcoma (RMS) es el tumor ma-ligno de partes blandas más común en la infancia. Se dis-tinguen principalmente dos subtipos histológicos: embrio-nario (RMSe) y alveolar (RMSa), teniendo el primero mejor pronóstico que el segundo. Estudios recientes han identifi-cado alteraciones moleculares (transcriptos de fusión PAX3 y PAX7) en el 80% de los RMSa. Estos transcriptos de fusión, además de definir el diagnóstico, le confieren propiedades biológicas al tumor independientemente del subtipo histoló-gico, que modifican su comportamiento. El estudio de estos marcadores podría ser incorporado a la estratificación de riesgo (edad, tamaño tumoral, tipo histológico, localización) al comprobarse que los mismos confieren un valor pronós-tico adverso. Objetivos: el objetivo del siguiente estudio fue implementar la búsqueda de los transcriptos de fusión PAX3 y PAX7 en las muestras de pacientes diagnosticados con RMS. Se plan-teó, también, el estudio de la asociación entre los marcado-res moleculares con la estratificación de riesgo y la respuesta terapéutica de pacientes pediátricos con RMS

    Aplicación de biología molecular en veterinaria: Pcr como método de diagnóstico para investigar presencia de Escherichia Coli productora de Verotoxina (Vtec) en caninos de zonas rurales y periurbanas. Su implicancia en salud pública

    Get PDF
    El síndrome urémico hemolítico (SUH) se caracteriza por anemia hemolítica microangiopática, plaquetopenia y daño renal. Constituye la primera causa de insuficiencia renal aguda en la edad pediátrica y la segunda de insuficiencia renal crónica. Escherichia coli productor de verotoxina es el primer agente etiológico de SUH. Los objetivos del presente trabajo son determinar si los perros pueden constituir un riesgo para la salud pública como portadores de VTEC y poner a punto la técnica de la reacción en cadena de la polimerasa (PCR). Hasta la fecha se han tomado 26 muestras de zonas peri urbanas y de caninos de la Sociedad Mendocina Protectora de Animales (SMPA). Las muestras fueron obtenidas mediante hisopado rectal de caninos y fueron sembradas en el medio de cultivo selectivo Agar Mac Conkey Sorbitol y Agar Levine e incubadas 24 horas a 37°C

    Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement

    Get PDF
    Interleukin-1 (IL-1), a proinflammatory cytokine synthesized and released by activated microglia, can cause dopaminergic neurodegeneration leading to Parkinsons disease (PD). However, it is uncertain whether IL-1 can act directly, or by exacerbating the harmful actions of other brain insults. To ascertain the role of the IL-1 pathway on dopaminergic neurodegeneration and motor skills during aging, we compared mice with impaired [caspase-1 knockout (casp1(-/-))] or overactivated IL-1 activity [IL-1 receptor antagonist knockout (IL-1ra(-/-))] to wild-type (wt) mice at young and middle age. Their motor skills were evaluated by the open-field and rotarod tests, and quantification of their dopamine neurons and activated microglia within the substantia nigra were performed by immunohistochemistry. IL-1ra(-/-) mice showed an age-related decline in motor skills, a reduced number of dopamine neurons, and an increase in activated microglia when compared to wt or casp1(-/-) mice. Casp1(-/-) mice had similar changes in motor skills and dopamine neurons, but fewer activated microglia cells than wt mice. Our results suggest that the overactivated IL-1 pathway occurring in IL-1ra(-/-) mice in the absence of inflammatory interventions (e.g., intracerebral injections performed in animal models of PD) increased activated microglia, decreased the number of dopaminergic neurons, and reduced their motor skills. Decreased IL-1 activity in casp1(-/-) mice did not yield clear protective effects when compared with wt mice. In summary, in the absence of overt brain insults, chronic activation of the IL-1 pathway may promote pathological aspects of PD per se, but its impairment does not appear to yield advantages over wt mice.Funding Agencies|John Curtin School of Medical Research, The Australian National University</p

    Impaired Inflammatory Responses in Murine Lrrk2-Knockdown Brain Microglia

    Get PDF
    LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1β and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation

    Non-Steroidal Anti-Inflammatory Drugs and Cognitive Function: Are Prostaglandins at the Heart of Cognitive Impairment in Dementia and Delirium ?

    Get PDF
    Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
    corecore