528 research outputs found
Coercive Field and Magnetization Deficit in Ga(1-x)Mn(x)As Epilayers
We have studied the field dependence of the magnetization in epilayers of the
diluted magnetic semiconductor Ga(1-x)Mn(x)As for 0.0135 < x < 0.083.
Measurements of the low temperature magnetization in fields up to 3 T show a
significant deficit in the total moment below that expected for full saturation
of all the Mn spins. These results suggest that the spin state of the
non-ferromagnetic Mn spins is energetically well separated from the
ferromagnetism of the bulk of the spins. We have also studied the coercive
field (Hc) as a function of temperature and Mn concentration, finding that Hc
decreases with increasing Mn concentration as predicted theoretically.Comment: 15 total pages -- 5 text, 1 table, 4 figues. Accepted for publication
in MMM 2002 conference proceedings (APL
Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions
We demonstrate efficient spin-polarized tunneling between a ferromagnetic
metal and a ferromagnetic semiconductor with highly mismatched conductivities.
This is indicated by a large tunneling magnetoresistance (up to 30%) at low
temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic
metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a
nonmagnetic semiconductor (AlAs). Analysis of the current-voltage
characteristics yields detailed information about the asymmetric tunnel
barrier. The low temperature conductance-voltage characteristics show a zero
bias anomaly and a V^1/2 dependence of the conductance, indicating a
correlation gap in the density of states of GaMnAs. These experiments suggest
that MnAs/AlAs heterostructures offer well characterized tunnel junctions for
high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.
Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors
We present a numerical model study of the zero-temperature infrared optical
properties of (III,Mn)V diluted magnetic semiconductors. Our calculations
demonstrate the importance of treating disorder and interaction effects
simultaneously in modelling these materials. We find that the conductivity has
no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and
that oscillator weight is shifted to higher frequencies by stronger disorder.
These results are in good qualitative agreement with recent thin film
absorption measurements. We use our numerical findings to discuss the use of
f-sum rules evaluated by integrating optical absorption data for accurate
carrier-density estimates.Comment: 7 pages, 3 figure
Global versus Local Ferromagnetism in a Model for Diluted Magnetic Semiconductors Studied with Monte Carlo Techniques
A model recently introduced for diluted magnetic semiconductors by Berciu and
Bhatt (PRL 87, 107203 (2001)) is studied with a Monte Carlo technique, and the
results are compared to Hartree-Fock calculations. For doping rates close to
the experimentally observed metal-insulator transition, a picture dominated by
ferromagnetic droplets formed below a T* scale emerges. The moments of these
droplets align as the temperature is lowered below a critical value Tc<T*. Our
Monte Carlo investigations provide critical temperatures considerably smaller
than Hartree-Fock predictions. Disorder does not seem to enhance ferromagnetism
substantially. The inhomogeneous droplet state should be strongly susceptible
to changes in doping and external fields.Comment: 4 pages, 4 figure
Clustered States as a New Paradigm of Condensed Matter Physics
We argue that several materials of much current interest in condensed matter
physics share common phenomenological aspects that only very recent
investigations are unveiling. The list includes colossal magnetoresistance
manganites, high temperature superconducting cuprates, diluted magnetic
semiconductors, and others. The common aspect is the relevance of intrinsic
inhomogeneities in the form of "clustered states", as explained in the text.Comment: elsart3, 6 pages, 5 figures. Invited paper for the Conference
Proceedings of the International Conference on Magnetism, Rome, July 200
Above-Room-Temperature Ferromagnetism in GaSb/Mn Digital Alloys
Digital alloys of GaSb/Mn have been fabricated by molecular beam epitaxy.
Transmission electron micrographs showed good crystal quality with individual
Mn-containing layers well resolved; no evidence of 3D MnSb precipitates was
seen in as-grown samples. All samples studied exhibited ferromagnetism with
temperature dependent hysteresis loops in the magnetization accompanied by
metallic p-type conductivity with a strong anomalous Hall effect (AHE) up to
400 K (limited by the experimental setup). The anomalous Hall effect shows
hysteresis loops at low temperatures and above room temperature very similar to
those seen in the magnetization. The strong AHE with hysteresis indicates that
the holes interact with the Mn spins above room temperature. All samples are
metallic, which is important for spintronics applications.
* To whom correspondence should be addressed. E-mail: [email protected]
Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers
We examine the Mn concentration dependence of the electronic and magnetic
properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The
Curie temperature (Tc), conductivity, and exchange energy increase with Mn
concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~
110 K. The ferromagnetic moment per Mn ion decreases monotonically with
increasing x, implying that an increasing fraction of the Mn spins do not
participate in the ferromagnetism. By contrast, the derived domain wall
thickness, an important parameter for device design, remains surprisingly
constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev
Electronic and magnetic properties of GaMnAs: Annealing effects
The effect of short-time and long-time annealing at 250C on the conductivity,
hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs
heterostructures is studied by in-situ conductivity measurements as well as
Raman and SQUID measurements before and after annealing. Whereas the
conductivity monotonously increases with increasing annealing time, the hole
density and the Curie temperature show a saturation after annealing for 30
minutes. The incorporation of thin InGaMnAs layers drastically enhances the
Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica
Photoemission studies of GaMnAs: Mn-concentration dependent properties
Using angle-resolved photoemission, we have investigated the development of
the electronic structure and the Fermi level pinnning in GaMnAs
with Mn concentrations in the range 1--6%. We find that the Mn-induced changes
in the valence-band spectra depend strongly on the Mn concentration, suggesting
that the interaction between the Mn ions is more complex than assumed in
earlier studies. The relative position of the Fermi level is also found to be
concentration-dependent. In particular we find that for concentrations around
3.5--5% it is located very close to the valence-band maximum, which is in the
range where metallic conductivity has been reported in earlier studies. For
concentration outside this range, larger as well as smaller, the Fermi level is
found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure
Theoretical models of ferromagnetic III-V semiconductors
Recent materials research has advanced the maximum ferromagnetic transition
temperature in semiconductors containing magnetic elements toward room
temperature. Reaching this goal would make information technology applications
of these materials likely. In this article we briefly review the status of work
over the past five years which has attempted to achieve a theoretical
understanding of these complex magnetic systems. The basic microscopic origins
of ferromagnetism in the (III,Mn)V compounds that have the highest transition
temperatures appear to be well understood, and efficient computation methods
have been developed which are able to model their magnetic, transport, and
optical properties. However many questions remain.Comment: 4 pages, 4 figures, review, to be published in Curr. Appl. Phy
- …
