37 research outputs found

    Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pepino mosaic virus </it>(PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, have already been described. The isolates display a wide range on symptoms on infected plant species, ranging from mild mosaic to severe necrosis. However, little is known about the mechanisms and pattern of PepMV molecular evolution and about the role of individual proteins in host-pathogen interactions.</p> <p>Methods</p> <p>The nucleotide sequences of the triple gene block 3 (TGB3) from PepMV isolates varying in symptomatology and geographic origin have been analyzed. The modes and patterns of molecular evolution of the TGBp3 protein were investigated by evaluating the selective constraints to which particular amino acid residues have been subjected during the course of diversification. The tridimensional structure of TGBp3 protein has been modeled <it>de novo </it>using the Rosetta algorithm. The correlation between symptoms development and location of specific amino acids residues was analyzed.</p> <p>Results</p> <p>The results have shown that TGBp3 has been evolving mainly under the action of purifying selection operating on several amino acid sites, thus highlighting its functional role during PepMV infection. Interestingly, amino acid 67, which has been previously shown to be a necrosis determinant, was found to be under positive selection.</p> <p>Conclusions</p> <p>Identification of diverse selection events in TGB3p3 will help unraveling its biological functions and is essential to an understanding of the evolutionary constraints exerted on the <it>Potexvirus </it>genome. The estimated tridimensional structure of TGBp3 will serve as a platform for further sequence, structural and function analysis and will stimulate new experimental advances.</p

    Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave

    Get PDF
    The third millennium BCE was a period of major cultural and demographic changes in Europe that signaled the beginning of the Bronze Age. People from the Pontic steppe expanded westward, leading to the formation of the Corded Ware complex and transforming the genetic landscape of Europe. At the time, the Globular Amphora culture (3300–2700 BCE) existed over large parts of Central and Eastern Europe, but little is known about their interaction with neighboring Corded Ware groups and steppe societies. Here we present a detailed study of a Late Neolithic mass grave from southern Poland belonging to the Globular Amphora culture and containing the remains of 15 men, women, and children, all killed by blows to the head. We sequenced their genomes to between 1.1- and 3.9-fold coverage and performed kinship analyses that demonstrate that the individuals belonged to a large extended family. The bodies had been carefully laid out according to kin relationships by someone who evidently knew the deceased. From a population genetic viewpoint, the people from Koszyce are clearly distinct from neighboring Corded Ware groups because of their lack of steppe-related ancestry. Although the reason for the massacre is unknown, it is possible that it was connected with the expansion of Corded Ware groups, which may have resulted in competition for resources and violent conflict. Together with the archaeological evidence, these analyses provide an unprecedented level of insight into the kinship structure and social behavior of a Late Neolithic community

    Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    Get PDF
    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring in Europe when tested under different environmental conditions. To this end we compared the infectivity and symptom development of three, well characterized isolates belonging to three different PepMV strains, EU-tom, Ch2 and US1, by inoculating them on tomato, possible alternative host plants in the family Solanaceae and selected test plants. The inoculation experiments were done in 10 countries from south to north in Europe. The importance of alternative hosts among the solanaceous crops and the usefulness of test plants in the biological characterization of PepMV isolates are discussed. Our data for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana occidentalis 37B is a useful indicator plant for PepMV studies, since it reacts with a different symptomatology to each one of the PepMV strains.Ravnikar, M.; Blystad, D.; Van Der Vlugt, R.; Alfaro Fernández, AO.; Del Carmen Cordoba, M.; Bese, G.; Hristova, D.... (2015). Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. European Journal of Plant Pathology. 143(1):43-56. doi:10.1007/s10658-015-0664-1S43561431Alfaro-Fernández, A., Córdoba-Sellés, M. C., Herrera-Vásquez, J. A., Cebrián, M. C., & Jordá, C. (2009). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226.Charmichael, D. J., Rey, M. E. C., Naidoo, S., Cook, G., & van Heerden, S. W. (2011). First report of Pepino mosaic virus infecting tomato in South Africa. Plant Disease, 95(6), 767.2.Córdoba, M. C., Martínez-Priego, L., & Jordá, C. (2004). New natural hosts of Pepino mosaic virus in Spain. Plant Disease, 88, 906.Córdoba-Sellés, M. C., García-Rández, A., Alfaro-Fernández, A., & Jordá-Gutiérrez, C. (2007). Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.Efthimiou, K. E., Gatsios, A. P., Aretakis, K. C., Papayannis, L. C., & Katis, N. I. (2011). First report of Pepino mosaic virus infecting greenhouse cherry tomato in Greece. Plant Disease, 95(1), 78.2.Fakhro, A., von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gómez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.Hanssen, I. M., Paeleman, A., Vandewoestijne, E., Van Bergen, L., Bragard, C., Lievens, B., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2009). Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathology, 58, 450–460.Hanssen, I. M., Mumford, R., Blystad, D.-G., Cortez, I., Hasiów-Jaroszewska, B., Hristova, D., Pagán, I., Pereira, A.-M., Peters, J., Pospieszny, H., Ravnikar, M., Stijger, I., Tomassoli, L., Varveri, C., van der Vlugt, R., & Nielsen, S. L. (2010). Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 126, 145–152.Hasiów-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010a). Pepino mosaic virus – a pathogen of tomato crops in Poland: biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.Hasiów-Jaroszewska, B., Jackowiak, P., Borodynko, N., Figlerowicz, M., & Pospieszny, H. (2010b). Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 41, 260–267.Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm no. 19. Potato. Food and agriculture organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome pp 177Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.Jordá, C., Lázaro Pérez, A., & Martínez Culebras, P. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J., (eds). (2012). potexvirus, pp 912–915, in virus taxonomy, classification and nomenclature of viruses; ninth report of the international committee on taxonomy of viruses (p 1327) London, UK: Elsevier Academic PressLing, K.-S., & Zhang, W. (2011). First report of Pepino mosaic virus infecting tomato in Mexico. Plant Disease, 95(8), 1035.Martin, J., & Mousserion, C. (2002). Potato varieties which are sensitive to the tomato strains of Pepino mosaic virus (PepMV). Phytoma Défence Végétaux, 552, 26–28.Mehle, N., Gutierrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Applied and Environmental Microbiology, 80(4), 1455–1462.Moreno-Pérez, M. G., Pagán, I., Aragón-Caballero, L., Cáceres, F., Aurora Fraile, A., & García-Arenal, F. (2014). Ecological and genetic determinants of Pepino mosaic virus emergence. Journal of Virology, 88(6), 3359–3368.Noël, P., Hance, T., & Bragard, C. (2014). Transmission of the pepino mosaic virus by whitefly. European Journal of Plant Pathology, 138, 23–27.Pagan, I., Cordoba-Selles, M. D., Martinez-Priego, L., Fraile, A., Malpica, J. M., Jorda, C., & Garcia-Arenal, F. (2006). Genetic structure of the population of pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.Papayiannis, L. C., Kokkinos, C. D., & Alfaro-Fernández, A. (2012). Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. European Journal of Plant Pathology, 132, 1–7.Pospieszny, H., Haslow, B., & Borodynko, N. (2008). Characterization of two Polish isolates of Pepino mosaic virus. European Journal of Plant Pathology, 122, 443–445.Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.Samson, R. G., Allen, T. C., & Whitworth, J. L. (1993). Evaluation of direct tissue blotting to detect potato viruses. American Potato Journal, 70, 257–265.Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of pepino mosaic virus (PepMV) and pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443–452.Shipp, J. L., Buitenhuis, R., Stobbs, L., Wang, K., Kim, W. S., & Ferguson, G. (2008). Vectoring of pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149–155.Van der Vlugt, R. A. A. (2009). Pepino mosaic virus (review). Hellenic Plant Protection Journal, 2, 47–56.Van der Vlugt, R. A. A., & Stijger, C. C. M. M. (2008). Pepino mosaic virus. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (5th ed., pp. 103–108). Wageningen: Oxford Elsevier.Van der Vlugt, R. A. A., Stijger, C. C. M. M., Verhoeven, J. T. J., & Lesemann, D.-E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.Van der Vlugt, R. A. A., Cuperus, C., Vink, J., Stijger, I. C. M. M., Lesemann, D.-E., Verhoeven, J. T. J., & Roenhorst, J. W. (2002). Identification and characterization of Pepino mosaic potexvirus in tomato. Bulletin EPPO/EPPO Bulletin, 32, 503–508.Verchot-Lubicz, J., Chang-Ming, Y., & Bamunusinghe, D. (2007). Molecular biology of potexviruses: recent advances. Journal of General Virology, 88(6), 1643–1655.Verhoeven, J. T. H. J., van der Vlugt, R., & Roenhorst, J. W. (2003). High similarity between tomato isolates of pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.Werkman, A.W., & Sansford, C.E. (2010). Pest risk analysis for pepino mosaic virus for the EU. Deliverable Report 4.3. EU Sixth Framework project PEPEIRA. http:// www.pepeira.com .Wright, D., & Mumford, R. (1999). Pepino mosaic potexvirus (PepMV): first records in tomato in the United Kingdom. Plant disease notice (89th ed.). York, UK: Central Science Laboratory

    Prenatal development of the swines stomach innervations

    No full text

    Morphostatistical analysis of the swine humerus during the prenatal period

    No full text

    Partial characterization of Sunn-hemp mosaic tobamovirus [SHMV] isolated from bean plants [Phaseolus vulgaris L.]

    No full text
    This work presents some properties of Sunn-hemp mosaic tobamovirus (SHMV) orginally isolated from bean plants. Virus infected host range and induced symptoms that were typical for SHMV. Following plant species distinquished SHMV from tobacco mosaic tobamovirus (TMV): Phaseolus vulgaris, Pisum sativum, Lupinus albus and Lycopersicon esculentum. In immunoblotting the serum against SHMV did not react with TMV and Tomato mosaic tobamovirus (ToMV). The electrophoretical patterns of whole virions and capsid proteins were characteristic for SHMV and different from that of TMV and ToMV.W pracy przedstawiono charakterystykę wirusa mozaiki krotalarii (SHMV) wyizolowanego z siewek fasoli wyrosłych z zainfekowanych nasion. Stwierdzono, że zakres roślin gospodarzy badanego izolatu SHMV oraz wywoływane przez niego objawy chorobowe były typowe dla tego wirusa. Gatunki roślin takie jak: Phaseolus vulgaris, Pisum sativum, Lupinus albus i Lycopersicon esculentum różnicują SHMV od TMV. W teście immunoblotingu surowica przeciwko SHMV nie reagowała z TMV-U i ToMV-2., z kolei surowica przeciwko TMV reagowała jedynie z TMV-U₁ i ToMV-2. Obrazy elektroforetyczne zarówno całych virionów jak i białek otoczki wirusowej były charakterystyczne dla SHMV i różne od tych dla TMV-U₁ oraz ToMV-2
    corecore