45 research outputs found

    Forebrain-independent generation of hyperthermic convulsions in infant rats

    Get PDF
    Febrile seizures are the most common type of convulsive events in children. It is generally assumed that the generalization of these seizures is a result of brainstem invasion by the initial limbic seizure activity. Using precollicular transection in 13-day-old rats to isolate the forebrain from the brainstem, we demonstrate that the forebrain is not required for generation of tonic-clonic convulsions induced by hyperthermia or kainate. Compared with sham-operated littermate controls, latency to onset of convulsions in both models was significantly shorter in pups that had undergone precollicular transection, indicating suppression of the brainstem seizure network by the forebrain in the intact animal. We have shown previously that febrile seizures are precipitated by hyperthermia-induced respiratory alkalosis. Here, we show that triggering of hyperthermia-induced hyperventilation and consequent convulsions in transected animals are blocked by diazepam. The present data suggest that the role of endogenous brainstem activity in triggering tonic-clonic seizures should be re-evaluated in standard experimental models of limbic seizures. Our work sheds new light on the mechanisms that generate febrile seizures in children and, therefore, on how they might be treated.Peer reviewe

    Endogenous brain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia

    Get PDF
    Abstract Aim To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. Methods Steady or intermittent asphyxia was induced for 15-45 min in anesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2). Hypoxia and hypercapnia were induced with low O2 and high CO2, respectively. Oxygen partial pressure (PO2) and pH were measured with microsensors within the brain and subcutaneous (?body?) tissue. Blood lactate was measured after asphyxia. Results Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2, brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. Conclusion Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.Peer reviewe

    Searching for super-WIMPs in leptonic heavy meson decays

    Get PDF
    We study constraints on the models of bosonic super-weakly interacting particle (super-WIMP) dark matter (DM) with DM masses mXO(1100)m_X \sim \mathcal{O}(1 - 100) keV from leptonic decays Mνˉ+XM\rightarrow \ell \bar{\nu}_\ell + X, where M=B±,D±,Ds±M=B^\pm, D^\pm, D_s^\pm is a heavy meson state. We focus on two cases where XX denotes either a light pseudoscalar (axion-like), or a light vector state that couples to the standard model (SM) through kinetic mixing. We note that for a small DM mass these decays are separately sensitive to DM couplings to quarks, but not its mass.Comment: 17 pages, 3 figures, 6 table

    Transcranial magnetic stimulation set-up for small animals

    Get PDF
    Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.Peer reviewe

    Snake Genome Sequencing : Results and Future Prospects

    Get PDF
    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.Peer reviewe

    Feebly-Interacting Particles:FIPs 2020 Workshop Report

    Full text link
    With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.Comment: 240 pages, 71 figure

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore