54 research outputs found

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes.

    Get PDF
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≥ baseline), "super responders" (24-month C-peptide ≥ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects

    Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface

    Get PDF
    Background. Sulfatide is known to chaperone insulin crystallization within the pancreatic beta cell, but it is not known if this results from sulfatide being integrated inside the crystal structure or by binding the surface of the crystal. With this study, we aimed to characterize the molecular mechanisms underlying the integral role for sulfatide in stabilizing insulin crystals prior to exocytosis. Methods. We cocrystallized human insulin in the presence of sulfatide and solved the structure by molecular replacement. Results. The crystal structure of insulin crystallized in the presence of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals. Conclusions. Sulfatide is known to stabilize insulin crystals, and we demonstrate here that in beta cells sulfatide is likely coating insulin crystals. However, there is no evidence for sulfatide to be built into the crystal lattice

    The Women’s Leadership Gap in Diabetes: A Call for Equity and Excellence

    Get PDF
    Women are broadly underrepresented in scientific leadership positions and their accomplishments are not provided equal recognition compared with those of men, but the imbalance in the field of diabetes is unknown. Hence, we analyzed multiple aspects of historical and present-day female representation in the diabetes field.We quantified gender representation at annual American Diabetes Association (ADA) meetings; editorial board service positions for ADA and the European Association for the Study of Diabetes (EASD) journals; principal investigators for ADA, JDRF, and National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases P30 grant funding; and ADA, JDRF, and EASD award recipients. There are many women in the field of diabetes: registration for the ADA Scientific Sessions has been 43% female since 2016, and for over five decades, women comprised 83% of ADA Presidents of Health Care and Education. Yet, only 9% of ADA Presidents of Medicine and Science have been women. Women were well represented on editorial boards for journals focused on diabetes education (Diabetes Spectrum, 89% female) and primary care (Clinical Diabetes, 49% female) but not for the more academically targeted Diabetes Care (34% female), Diabetes (21% female), and Diabetologia (30% female). Only one-third of ADA Pathway to Stop Diabetes and JDRF grants have been awarded to women, and females only lead 2 of 18 (11%) of the P30-supported Diabetes Research Centers. Finally, only 2–12% of major ADA, JDRF, and EASD awards were given to women, without significant change over time. Despite increasing recognition of gender imbalance in research and medicine, many disparities in the field of diabetes persist. We call for decreasing barriers for advancement of female investigators and creating environments that promote their retention and equitable recognition for their contributions to the field

    Application of a genetic risk score to racially diverse type 1 diabetes populations demonstrates the need for diversity in risk-modeling

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Prior studies identified HLA class-II and 57 additional loci as contributors to genetic susceptibility for type 1 diabetes (T1D). We hypothesized that race and/or ethnicity would be contextually important for evaluating genetic risk markers previously identified from Caucasian/European cohorts. We determined the capacity for a combined genetic risk score (GRS) to discriminate disease-risk subgroups in a racially and ethnically diverse cohort from the southeastern U.S. including 637 T1D patients, 46 at-risk relatives having two or more T1D-related autoantibodies (≥2AAb+), 790 first-degree relatives (≤1AAb+), 68 second-degree relatives (≤1 AAb+), and 405 controls. GRS was higher among Caucasian T1D and at-risk subjects versus ≤ 1AAb+ relatives or controls (P < 0.001). GRS receiver operating characteristic AUC (AUROC) for T1D versus controls was 0.86 (P < 0.001, specificity = 73.9%, sensitivity = 83.3%) among all Caucasian subjects and 0.90 for Hispanic Caucasians (P < 0.001, specificity = 86.5%, sensitivity = 84.4%). Age-at-diagnosis negatively correlated with GRS (P < 0.001) and associated with HLA-DR3/DR4 diplotype. Conversely, GRS was less robust (AUROC = 0.75) and did not correlate with age-of-diagnosis for African Americans. Our findings confirm GRS should be further used in Caucasian populations to assign T1D risk for clinical trials designed for biomarker identification and development of personalized treatment strategies. We also highlight the need to develop a GRS model that accommodates racial diversity.Supported by grants from the National Institutes of Health P01 AI42288 (MAA), R01 DK106191 (TMB), UC4 DK104194 (CEM), and from the JDRF Career Development Award (2–2012–280 to TMB). RAO is supported by a Diabetes UK Harry Keen Fellowship. DJP is supported by the JDRF Postdoctoral Fellowship Award (2-PDF-2016-207-A-N)

    Histological validation of a type 1 diabetes clinical diagnostic model for classification of diabetes

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAims: Misclassification of diabetes is common due to an overlap in the clinical features of type 1 and type 2 diabetes. Combined diagnostic models incorporating clinical and biomarker information have recently been developed that can aid classification, but they have not been validated using pancreatic pathology. We evaluated a clinical diagnostic model against histologically defined type 1 diabetes. Methods: We classified cases from the Network for Pancreatic Organ donors with Diabetes (nPOD) biobank as type 1 (n = 111) or non-type 1 (n = 42) diabetes using histopathology. Type 1 diabetes was defined by lobular loss of insulin-containing islets along with multiple insulin-deficient islets. We assessed the discriminative performance of previously described type 1 diabetes diagnostic models, based on clinical features (age at diagnosis, BMI) and biomarker data [autoantibodies, type 1 diabetes genetic risk score (T1D-GRS)], and singular features for identifying type 1 diabetes by the area under the curve of the receiver operator characteristic (AUC-ROC). Results: Diagnostic models validated well against histologically defined type 1 diabetes. The model combining clinical features, islet autoantibodies and T1D-GRS was strongly discriminative of type 1 diabetes, and performed better than clinical features alone (AUC-ROC 0.97 vs. 0.95; P = 0.03). Histological classification of type 1 diabetes was concordant with serum C-peptide [median < 17 pmol/l (limit of detection) vs. 1037 pmol/l in non-type 1 diabetes; P < 0.0001]. Conclusions: Our study provides robust histological evidence that a clinical diagnostic model, combining clinical features and biomarkers, could improve diabetes classification. Our study also provides reassurance that a C-peptide-based definition of type 1 diabetes is an appropriate surrogate outcome that can be used in large clinical studies where histological definition is impossible. Parts of this study were presented in abstract form at the Network for Pancreatic Organ Donors Conference, Florida, USA, 19–22 February 2019 and Diabetes UK Professional Conference, Liverpool, UK, 6–8 March 2019.Diabetes UKNational Institutes of Health (NIH)National Institute for Health Research (NIHR)JDRFHelmsley Charitable Trus

    CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation.

    Get PDF
    The costimulatory molecule CD226 is highly expressed on effector/memory T cells and natural killer cells. Costimulatory signals received by T cells can impact both central and peripheral tolerance mechanisms. Genetic polymorphisms in CD226 have been associated with susceptibility to type 1 diabetes and other autoimmune diseases. We hypothesized that genetic deletion of Cd226 in the non-obese diabetic (NOD) mouse would impact type 1 diabetes incidence by altering T cell activation. CD226 knockout (KO) NOD mice displayed decreased disease incidence and insulitis in comparison to wild-type (WT) controls. Although female CD226 KO mice had similar levels of sialoadenitis as WT controls, male CD226 KO mice showed protection from dacryoadenitis. Moreover, CD226 KO T cells were less capable of adoptively transferring disease compared to WT NOD T cells. Of note, CD226 KO mice demonstrated increased CD8+ single positive (SP) thymocytes, leading to increased numbers of CD8+ T cells in the spleen. Decreased percentages of memory CD8+CD44+CD62L- T cells were observed in the pancreatic lymph nodes of CD226 KO mice. Intriguingly, CD8+ T cells in CD226 KO mice showed decreased islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-tetramer and CD5 staining, suggesting reduced T cell receptor affinity for this immunodominant antigen. These data support an important role for CD226 in type 1 diabetes development by modulating thymic T cell selection as well as impacting peripheral memory/effector CD8+ T cell activation and function

    Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Diabetes is associated with increased mortality from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Given literature suggesting a potential association between SARS-CoV-2 infection and diabetes induction, we examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2), the key entry factor for SARS-CoV-2 infection. Specifically, we analyzed five public scRNA-seq pancreas datasets and performed fluorescence in situ hybridization, western blotting, and immunolocalization for ACE2 with extensive reagent validation on normal human pancreatic tissues across the lifespan, as well as those from coronavirus disease 2019 (COVID-19) cases. These in silico and ex vivo analyses demonstrated prominent expression of ACE2 in pancreatic ductal epithelium and microvasculature, but we found rare endocrine cell expression at the mRNA level. Pancreata from individuals with COVID-19 demonstrated multiple thrombotic lesions with SARS-CoV-2 nucleocapsid protein expression that was primarily limited to ducts. These results suggest SARS-CoV-2 infection of pancreatic endocrine cells, via ACE2, is an unlikely central pathogenic feature of COVID-19-related diabetes.We thank the families of the organ donors and autopsy subjects for the gift of tissues. We also thank Jill K. Gregory, CMI (Icahn School of Medicine at Mount Sinai, New York, NY) for preparing the graphical abstract. These efforts were supported by NIH P01 AI042288 and UC4 DK108132 (M.A.A.); JDRF (M.A.A.); NIH R01 DK122160 (M.C.-T.); NIH R01 AI134971 and P30 DK020541 (D.H.); JDRF 3-PDF-2018-575-A-N (V.V.D.H.); R01 DK093954 , R21 DK119800-01A1 , UC4 DK104166 , and U01 DK127786 (C.E.-M.); VA Merit Award I01BX001733 (C.E.-M.); Imaging Core of NIH/ NIDDK P30 DK097512 (C.E.-M.); gifts from the Sigma Beta Sorority , the Ball Brothers Foundation , and the George and Frances Ball Foundation (C.E.-M.); the Network for Pancreatic Organ Donors with Diabetes ( nPOD ; RRID: SCR_014641 ) ( 5-SRA-2018-557-Q-R ); and The Leona M. & Harry B. Helmsley Charitable Trust ( 2018PG-T1D053 ). The authors also wish to acknowledge the Islet and Physiology Core of the Indiana Diabetes Research Center ( P30DK097512 ). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

    The challenge of modulating beta-cell autoimmunity in type 1 diabetes

    No full text
    Transplantation and autoimmunit
    • …
    corecore