219 research outputs found

    Emergence of bimodality in controlling complex networks

    Get PDF

    RNA interference in marine and freshwater sponges

    Get PDF
    Background: The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results: We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from ‘knocking down’ expression of the actin gene. Conclusion: This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals

    Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    Get PDF
    The mapping of electrostatic potentials and magnetic fields in liquids usingelectron holography has been considered to be unrealistic. Here, we showthat hydrated cells ofMagnetospirillum magneticumstrain AMB-1 and assem-blies of magnetic nanoparticles can be studied using off-axis electronholography in a fluid cell specimen holder within the transmission electronmicroscope. Considering that the holographic object and reference waveboth pass through liquid, the recorded electron holograms show sufficientinterference fringe contrast to permit reconstruction of the phase shift ofthe electron wave and mapping of the magnetic induction from bacterialmagnetite nanocrystals. We assess the challenges of performingin situmagne-tization reversal experiments using a fluid cell specimen holder, discussapproaches for improving spatial resolution and specimen stability, and outlinefuture perspectives for studying scientific phenomena, ranging from interpar-ticle interactions in liquids and electrical double layers at solid–liquidinterfaces to biomineralization and the mapping of electrostatic potentialsassociated with protein aggregation and folding

    Associations between Health Effects and Particulate Matter and Black Carbon in Subjects with Respiratory Disease

    Get PDF
    We measured fractional exhaled nitric oxide (FE(NO)), spirometry, blood pressure, oxygen saturation of the blood (SaO(2)), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM(10) and PM(2.5) (particulate matter ≤10 μm or ≤2.5 μm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects’ homes. Personal PM(10) filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 μg/m(3) increase in 24-hr average outdoor PM(10) and PM(2.5) was associated with a 5.9 [95% confidence interval (CI), 2.9–8.9] and 4.2 ppb (95% CI, 1.3–7.1) increase in FE(NO), respectively. A 1 μg/m(3) increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FE(NO) of 2.3 ppb (95% CI, 1.1–3.6), 4.0 ppb (95% CI, 2.0–5.9), and 1.2 ppb (95% CI, 0.2–2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO(2) in these subjects. Results from this study indicate that FE(NO) may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes

    MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect

    Get PDF
    Multiplex assays of variant effect (MAVEs) are a family of methods that includes deep mutational scanning experiments on proteins and massively parallel reporter assays on gene regulatory sequences. Despite their increasing popularity, a general strategy for inferring quantitative models of genotype-phenotype maps from MAVE data is lacking. Here we introduce MAVE-NN, a neural-network-based Python package that implements a broadly applicable information-theoretic framework for learning genotype-phenotype maps-including biophysically interpretable models-from MAVE datasets. We demonstrate MAVE-NN in multiple biological contexts, and highlight the ability of our approach to deconvolve mutational effects from otherwise confounding experimental nonlinearities and noise

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria

    Get PDF
    Background: The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results: We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from `knocking down' expression of the actin gene. Conclusion: This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals

    Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection

    Get PDF
    Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.United States. Dept. of Energy. Genomes To Life (DE-FG02-03ER6344)National Science Foundation (U.S.). Genes and Genomes Systems Cluster (0719344)National Science Foundation (U.S.). Center for Bits and Atoms (0122419)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (0540879

    Rapid and efficient construction of markerless deletions in the Escherichia coli genome

    Get PDF
    We have developed an improved and rapid genomic engineering procedure for the construction of custom-designed microorganisms. This method, which can be performed in 2 days, permits restructuring of the Escherichia coli genome via markerless deletion of selected genomic regions. The deletion process was mediated by a special plasmid, pREDI, which carries two independent inducible promoters: (i) an arabinose-inducible promoter that drives expression of λ-Red recombination proteins, which carry out the replacement of a target genomic region with a marker-containing linear DNA cassette, and (ii) a rhamnose-inducible promoter that drives expression of I-SceI endonuclease, which stimulates deletion of the introduced marker by double-strand breakage-mediated intramolecular recombination. This genomic deletion was performed successively with only one plasmid, pREDI, simply by changing the carbon source in the bacterial growth medium from arabinose to rhamnose. The efficiencies of targeted region replacement and deletion of the inserted linear DNA cassette were nearly 70 and 100%, respectively. This rapid and efficient procedure can be adapted for use in generating a variety of genome modifications
    corecore