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Emergence of bimodality in controlling
complex networks
Tao Jia1, Yang-Yu Liu1,2, Endre Csóka3, Márton Pósfai1,4,5, Jean-Jacques Slotine6,7 & Albert-László Barabási1,2,8,9

Our ability to control complex systems is a fundamental challenge of contemporary science.

Recently introduced tools to identify the driver nodes, nodes through which we can achieve

full control, predict the existence of multiple control configurations, prompting us to classify

each node in a network based on their role in control. Accordingly a node is critical,

intermittent or redundant if it acts as a driver node in all, some or none of the control

configurations. Here we develop an analytical framework to identify the category of each

node, leading to the discovery of two distinct control modes in complex systems: centralized

versus distributed control. We predict the control mode for an arbitrary network and show

that one can alter it through small structural perturbations. The uncovered bimodality has

implications from network security to organizational research and offers new insights into the

dynamics and control of complex systems.
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Complex Systems, Eötvös Loránd University, H-1053 Budapest, Hungary. 6 Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA. 7 Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA. 8 Department of Medicine and Division of Network Medicine, Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, USA. 9 Center for Network Science, Central European University, H-1051 Budapest, Hungary. Correspondence
and requests for materials should be addressed to A.-L.B. (email: barabasi@gmail.com).

NATURE COMMUNICATIONS | 4:2002 | DOI: 10.1038/ncomms3002 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/322823941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:barabasi@gmail.com
http://www.nature.com/naturecommunications


A
dynamical system is controllable if it can be driven from

any initial state to any desired final state within finite
time1–4. In general, controllability can be achieved by

changing the state of a small set of driver nodes, which drive the
dynamics of the whole network5. For a linear time-invariant
dynamics we can identify the minimum driver node set (MDS),
representing the smallest set of nodes through which we can yield
control over the whole system5–19. Although the number of driver
nodes sufficient and necessary for control (ND) is primarily fixed
by the network’s degree distribution, there are multiple MDSs
with the same ND that can maintain control. For example, for the
five node network shown in Fig. 1a ND¼ 3, but the formalism
indicates that control can be achieved via three different MDSs:
{1,3,4}, {1,3,5} and {1,4,5}.

Here we explore the role of individual nodes in controlling a
network by classifying each node into one of the three categories
based on its likelihood of being included in MDS20: critical,
meaning that a node must always be controlled to control a
system (it is part of all MDSs); redundant, meaning that it is
never required for control (does not participate in any MDSs) and
intermittent, meaning that it acts as driver node in some control
configurations, but not in others. For example, in Fig. 1a node 1 is
critical, node 2 is redundant and nodes 3, 4, 5 are intermittent
(Fig. 1b). This classification leads to the discovery of a bifurcation
phenomenon, predicting that a bimodal behaviour determines the
controllability of many real networks. This bimodality helps us
uncover two control modes, centralized versus distributed.
We demonstrate both analytically and numerically the existence
of these two modes and show that the predicted control modes
naturally emerge in a wide range of real networks.

Results
Identifying node categories. We developed an algorithm to
identify the redundant nodes in a network with N nodes and L
links in OðNLÞ steps, offering the fraction nr of redundant
nodes for an arbitrary network (see Methods). We also proved
that a node is critical if and only if it has no incoming links
(Supplementary Note 1), a theorem that provides the fraction
of critical nodes in a network as nc¼Pin(0), where Pin(k) is
the incoming degree distribution. Finally, intermittent nodes
are neither critical nor redundant, hence their fraction is
ni¼ 1� nc� nr.

Bimodality in control. To explore the role of the network
topology, we measured nr and nc for networks with varying
average degree /kS. We find that for small /kS for an ensemble
of networks with identical degree distribution P(k), nr and nc

follow narrow distributions (Fig. 2a). This means that nr and nc

are primarily determined by P(k) (refs 21–24). Surprisingly, when

/kS exceeds a critical value kc (ref. 25), P(nr) becomes bimodal,
implying that systems with the same P(k) can exist in two distinct
states: some have small nr and for others nr is very large. This
bimodality is present in both random26 and scale-free
networks27,28 (Supplementary Note 2). The emergence of this
bimodal behaviour is best captured by plotting nr versus
/kS, observing a bifurcation as /kS reaches kc (Fig. 2b). This
bifurcation predicts two distinct control modes:

Centralized control: for networks that follow the upper branch
of the bifurcation diagram most nodes are redundant (nr). This
means that in these networks one can achieve control through a
small fraction of all nodes (ncþ ni), hence capturing a centralized
control mode (Fig. 2d). This has obvious consequences in
communication systems, as one can ensure a centralized system’s
security by protecting only a small fraction of nodes (ncþ ni); in
an organizational setting centralized network may be better
suited for task execution, such as manufacturing, where
efficiency is enhanced by subordination to a small number of
control nodes.

Distributed control: for networks on the lower branch ncþ ni

can exceed 90% of the nodes. Hence, most nodes can act as driver
nodes in some MDSs, resulting in a distributed control mode
(Fig. 2e). Securing such distributed communication networks
requires significant resources, as one can gain control of the
system via a large number of control configurations. Yet
organizations displaying distributed control may be more capable
of harbouring innovation, as different node combinations could
take control of the organization’s direction.

Intuitively, one would expect these two different control modes
to be associated with distinct network properties. However, we
find that networks with identical in- and out-degree distribution
can develop centralized or distributed control modes with equal
probability (Fig. 2a). For networks with different in- and out-
degree distributions the symmetry between the two branches is
broken, forcing the network in one or the other branch of the
bifurcation diagram. This is illustrated for networks with
PðkinÞ � k� gin

in and PðkoutÞ � k� gout
out , where ginagout. The

degree asymmetry forces a network to follow one or the other
branch of the bifurcation diagram (Fig. 2c), predetermining
whether the network displays a centralized or a distributed
control mode.

Analytical approach. To understand the origin of the observed
control modes, we map the control problem to maximum
matching5,29 (see Methods), which provides the fraction of
redundant nodes in infinite networks as

nr¼ 1�GinðyoutÞ; ð1Þ
where GinðxÞ¼

P1
k¼ 0 xkPinðkÞ is the generating function for

Pin(k) (ref. 22).
Here yout is the solution of the recursive equation

1� yout¼Houtð1�HinðyoutÞÞ; ð2Þ
where Hout;inðxÞ¼

P1
k¼ 1 xk� 1Qout;inðkÞ and Qout,in(k)¼

Pout,in(k)� k//kS is the excess degree distribution. Equations
(1) and (2) self-consistently predict nr from the network’s degree
distribution, in excellent agreement with the numerical results
(see the continuous lines in Fig. 2b,c), helping us understand the
origin of the observed bifurcation. For Pin(k)¼Pout(k) equation
(2) has a single solution for small /kS (top panel in Fig. 2f). As
/kS reaches kc, equation (2) develops three solutions, two of
which are stable, corresponding to the two branches of the
bifurcation diagram. As the new solutions are an analytic
continuation of the /kSokc solution, the system can continue
in any of the two branches, hence, the centralized or the
distributed control modes are equiprobable. If, however,
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Figure 1 | Categories of driver nodes in a complex network. (a) A network

with five nodes that can be control via three driver nodes (ND¼ 3).

The system is characterized by three distinct MDSs. (b) Node 1 is critical

as it is part of all MDSs shown in a, node 2 is redundant as it does not

participate in any MDS and nodes 3, 4, 5 are intermittent, participating

in some but not all MDSs.
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Pin(k)aPout(k), for /kS4kc only one of the two stable solutions
is an analytical continuation of the prebifurcation solution
(middle panel in Fig. 2g). In other words infinite systems with
different Pout(k) and Pin(k) are destined for the centralized or
distributed control mode, corresponding to the two branches of
the bifurcation diagram, depending on the nature of their degree
asymmetry. For small systems, the two modes can coexist
and jumps between them are possible (Supplementary Figs S1
and S2).

Bimodality in real networks. To demonstrate the empirical
relevance of these tools, we used equations (1) and (2) to calculate
nr for several real networks, starting from their degree distri-
bution (Supplementary Tables S1 and S2). Note that while for
some of these networks control is of potential relevance (like
regulatory networks30–32 or neural networks33), others like
citation networks34–36 or the WWW37–39 are of little or no

relevance for control. We analyse them mainly because they offer
diverse topologies that test the limits of our predictions. We
obtain a reasonable agreement between the analytically predicted
N theory

r and Nr obtained directly for each network (Fig. 3a,
Supplementary Fig. S3). To compare nr for different networks, we
plot them in function of 1� nD, representing the fraction of
nodes that do not require external control. Obviously, real
networks have widely different degree distributions, degree
asymmetries and even potential correlations40–44,18. Despite
these the predicted bifurcation is observed in real systems as
well (Fig. 3b, Supplementary Fig. S4). We find that some network
structures, such as the E. coli metabolic network45, are in the
‘prebifurcation’ region /kSokc: others, such as the mobile call
network46–50 and citation networks34–36, follow one or the other
branch of the bifurcation diagram, indicating that they are
characterized by either centralized or distributed control. To
identify the control mode charactering a particular network, we
introduce the transpose network, whose wiring diagram is
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Figure 2 | Bifurcation in control. (a) Distribution of the fraction of redundant (nr) and critical (nc) nodes in scale-free networks with gout¼ gin¼ 3,

documenting the emergence of a bimodal behaviour for high /kS. (b) nr and nc (insert) versus /kS in scale-free networks with degree exponents

gout¼ gin¼ 3, illustrating the emergence of a bifurcation for high /kS. (c) nr in scale-free networks with asymmetric in- and out-degree distribution,

that is, gout¼ 3, gin¼ 2.67 (upper branch) and gout¼ 2.67, gin¼ 3 (lower branch). The control mode is predetermined by their degree asymmetry. The solid

lines in b and c correspond to the analytical prediction of equations (1) and (2). The dashed line is the discontinuous solution of equation (2) when gout¼ 3

and gin¼ 2.67, which shows a gap between the actual evolution of nr. (d,e) Networks displaying centralized and distributed control. For both networks

ND¼4 and Nc¼ 1, yet they have rather different number of redundant nodes, Nr¼ 23 in d and Nr¼ 3 in e. (f,g) The curves Hout(1�Hin(x))þ x� 1 from

equation (2) shown for different /kS, gout¼ gin¼ 3 in f and gout¼ 3, gin¼ 2.67 in g. The continuous stable solutions of equation (2) are shown as filled

dots and the discontinuous solutions as empty circles.
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identical to the original network but the direction of each link is
reversed. The control mode is captured by comparing nr of a
network with nT

r of its transpose network: if Dnr¼ nr� nT
r 4 0 a

network is centralized and if Dnro0 it is distributed
(Supplementary Note 3). We find that a network’s degree
distribution allows us to infer its control mode (Supplementary
Note 4).

Altering the control mode. The fact that the two control modes
are better suited for different tasks raises an important question:
can we turn a network initially in the centralized mode into a
network in the distributed mode, or the other way around? Such a
transition is achieved by the transpose network. Indeed, we can
show that if the original network has a distributed control mode,
its transpose will be centralized. Yet, in most real systems
switching the direction of all links is either impossible or infea-
sible. We find, however, that in some networks the transition can
be induced by local changes, in some cases requiring us to flip the
direction of only a single well-chosen link (Fig. 3c). The precise
local change required to induce the transition is determined by

the network’s size and degree asymmetry: the larger the network
or the higher degree asymmetry, the more links need to be altered
to induce this transition. For example, for two manufacturing and
consulting networks51 (N¼ 77, L¼ 2228 and N¼ 46, L¼ 858)
the control mode can be altered by flipping only one link.
In contrast for the prison inmate network52,53, food web in Little
Rock lake54 and the C. elegans neural network33, we need to
change the direction of several links (4, 17 and 54 respectively,
representing 2%, 0.7% and 2% of all links) to alter the
control mode.

Discussion
In summary, our attempts to quantify the role of individual nodes
have led us to an unexpected discovery: the existence of two
distinct control modes, whose emergence is governed by a
bifurcation phenomenon. The control mode is determined by the
system’s degree asymmetry and has immediate implications on
network security or efficiency in organizational settings. Most
importantly, bimodality is a general property of all dense
networks, hence, we must consider its implications each time
we wish to control a complex system with sufficient connectivity.

These results raise several intriguing questions. For example,
the finding that the control mode can be altered via structural
perturbations raises the need for tools to identify the minimum
number of links whose reversal can help us reach the desired
control mode55. Furthermore, the proposed node classification
raises the possibility to correlate the role of a node in control with
the intrinsic node attributes. Finally, our node classification is
based on the node’s participation in various MDSs. However, one
can explore other node classifications as well, like that based on
the energy needed for control, or the time necessary to reach the
final state9, important issues that need further investigation.
Although bimodality is ubiquitous in physics, chemistry and
biology, the finding that it also has a key role in network control
opens new avenues to explore the control of real systems.

Methods
Identifying the driver nodes. We convert a directed network into a bipartite
graph with two disjoint sets of out and in nodes. A directed link from node i to
j corresponds to a connection between node i in the out set and node j’ in the in set
(Supplementary Fig. S5). By finding the maximum matching of the bipartite graph,
the minimum driver nodes are unmatched nodes in the in set. The critical,
intermittent and redundant nodes are always matched, occasionally matched and
never matched nodes in the in set, respectively (Supplementary Note 5).

Identifying the redundant nodes. Redundant nodes are always matched in
the bipartite graph. Therefore, if we force them unmatched, there would be no
alternative matching and the number of matched nodes will decrease, inspiring
the algorithm we developed to identify them:

(1) Find the maximum matching of the bipartite graph using the Hopcroft–
Karp algorithm29,56–59. Obtain a set of matched nodes in the in set (denoted by M).
(2) Pick one element (denoted by node i) in M. Identify the node in the out set
that matches node i (denoted by node j). (3) Keep the current matching and
temporarily remove node i with all its links. Check if there is an augmenting
path58,29 that starts from node j, ends at an unmatched node and alternates
between unmatched and matched links on the path. (4) If no augmenting path is
found, node i needs to be always matched, therefore, it is redundant. Otherwise
node i is replaceable and hence it is intermittent. (5) Add back the removed node i
and repeat step 2 until all nodes in set M is tested.

The number of computational steps needed to find one maximum matching is
OðN0:5LÞ. Each matched node requires a breadth first search (OðLÞ time) for the
augmenting path. The number of matched nodes is proportional to N. Therefore,
the complexity of this algorithm is OðNLÞ.

Calculating nr analytically. Denote with G a bipartite graph and G0 ¼G\i the
subgraph of G obtained by removing node i and all its links (Supplementary
Fig. S6). We proved a theorem that node i is not always matched in G if and only if
all its neighbouring nodes are always matched in the subgraph G0 (Supplementary
Note 6). On the basis of this theorem, the probability that a node in the in set with
degree k is not always matched is pk,in¼ (yout)k where yout is the probability that a
neighbouring node is always matched in the out set of the subgraph G0 . When
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averaging over degree distributions in infinite networks, the fraction of redundant
nodes, which are always matched nodes in the in set, is

nr ¼ 1�
X1

k¼ 0

PinðkÞ�pk;in

¼ 1�
X1

k¼ 0

PinðkÞðyoutÞk ¼ 1�GinðyoutÞ;
ð3Þ

which gives equation (1).
In the construction of subgraph G’, a neighbour of node i is accessed through a

randomly chosen link. This implies that the degree distribution associated with the
neighbouring node is the excess degree distribution, that is, the degree distribution
for a node at the end of a randomly chosen link. Furthermore, in G0 this randomly
chosen link is excluded, meaning that the degree of the neighbouring nodes will be
less by 1. Therefore, yout satisfies the equation

1� yout ¼
X1

k¼ 1

QoutðkÞðyinÞk� 1 ¼Houtð1� yinÞ: ð4Þ

By substituting in for out, we can build a similar equation

1� yin ¼
X1

k¼ 1

QinðkÞðyoutÞk� 1 ¼HinðyoutÞ: ð5Þ

Combining equations (4) and (5), we obtain equation (2).

Networks analysed. The model networks in this paper are Erdös–Rényi
network26 and scale-free network27,28, generated via the static model60. The real
networks we explored are described in Supplementary Tables S1 and S2.
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