81 research outputs found

    Alpha-Tomatine Induces Apoptosis and Inhibits Nuclear Factor-Kappa B Activation on Human Prostatic Adenocarcinoma PC-3 Cells

    Get PDF
    BACKGROUND: Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC(50)) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine. CONCLUSION/SIGNIFICANCE: α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression

    p57KIP2 control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect

    Get PDF
    p57 (Kip2, cyclin-dependent kinase inhibitor 1C), often found downregulated in cancer, is reported to hold tumor suppressor properties. Originally described as a cyclin-dependent kinase (cdk) inhibitor, p57KIP2 has since been shown to influence other cellular processes, beyond cell cycle regulation, including cell death and cell migration. Inhibition of cell migration by p57KIP2 is attributed to the stabilization of the actin cytoskeleton through the activation of LIM domain kinase-1 (LIMK-1). Furthermore, p57KIP2 is able to enhance mitochondrial-mediated apoptosis. Here, we report that the cell death promoting effect of p57KIP2 is linked to its effect on the actin cytoskeleton. Indeed, whereas Jasplakinolide, an actin cytoskeleton-stabilizing agent, mimicked p57KIP2's pro-apoptotic effect, destabilizing the actin cytoskeleton with cytochalsin D reversed p57KIP2's pro-apoptotic function. Conversely, LIMK-1, the enzyme mediating p57KIP2's effect on the actin cytoskeleton, was required for p57KIP2's death promoting effect. Finally, p57KIP2-mediated stabilization of the actin cytoskeleton was associated with the displacement of hexokinase-1, an inhibitor of the mitochondrial voltage-dependent anion channel, from the mitochondria, providing a possible mechanism for the promotion of the mitochondrial apoptotic cell death pathway. Altogether, our findings link together two tumor suppressor properties of p57KIP2, by showing that the promotion of cell death by p57KIP2 requires its actin cytoskeleton stabilization function

    The effects of long-term saturated fat enriched diets on the brain lipidome

    Get PDF
    The brain is highly enriched in lipids, where they influence neurotransmission, synaptic plasticity and inflammation. Non-pathological modulation of the brain lipidome has not been previously reported and few studies have investigated the interplay between plasma lipid homeostasis relative to cerebral lipids. This study explored whether changes in plasma lipids induced by chronic consumption of a well-tolerated diet enriched in saturated fatty acids (SFA) was associated with parallel changes in cerebral lipid homeostasis. Male C57Bl/6 mice were fed regular chow or the SFA diet for six months. Plasma, hippocampus (HPF) and cerebral cortex (CTX) lipids were analysed by LC-ESI-MS/MS. A total of 348 lipid species were determined, comprising 25 lipid classes. The general abundance of HPF and CTX lipids was comparable in SFA fed mice versus controls, despite substantial differences in plasma lipid-class abundance. However, significant differences in 50 specific lipid species were identified as a consequence of SFA treatment, restricted to phosphatidylcholine (PC), phosphatidylethanolamine (PE), alkyl-PC, alkenyl-PC, alkyl-PE, alkenyl-PE, cholesterol ester (CE), diacylglycerol (DG), phosphatidylinositol (PI) and phosphatidylserine (PS) classes. Partial least squares regression of the HPF/CTX lipidome versus plasma lipidome revealed the plasma lipidome could account for a substantial proportion of variation. The findings demonstrate that cerebral abundance of specific lipid species is strongly associated with plasma lipid homeostasis

    Thymosin β10 Expression Driven by the Human TERT Promoter Induces Ovarian Cancer-Specific Apoptosis through ROS Production

    Get PDF
    Thymosin β10 (Tβ10) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ10 diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ10, that can overexpress the Tβ10 gene in cancer cells. This was accomplished by replacing the native Tβ10 gene promoter with the human TERT promoter in Ad.TERT.Tβ10. We investigated the cancer suppression activity of Tβ10 and found that Ad.TERT.Tβ10 strikingly induced cancer-specific expression of Tβ10 as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ10 decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ10 overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ10 by Ad.TERT.Tβ10 could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells

    Is there a divide between local medicinal knowledge and Western medicine? a case study among native Amazonians in Bolivia

    Get PDF
    Background: Interest in ethnomedicine has grown in the last decades, with much research focusing on how local medicinal knowledge can contribute to Western medicine. Researchers have emphasized the divide between practices used by local medical practitioners and Western doctors. However, researchers have also suggested that merging concepts and practices from local medicinal knowledge and Western science have the potential to improve public health and support medical independence of local people. In this article we study the relations between local and Western medicinal knowledge within a native Amazonian population, the Tsimane'. Methods: We used the following methods: 1) participant observation and semi-structured interviews to gather background information, 2) free-listing and pile-sorting to assess whether Tsimane' integrate local medicinal knowledge and Western medicine at the conceptual level, 3) surveys to assess to what extent Tsimane' combine local medicinal knowledge with Western medicine in actual treatments, and 4) a participatory workshop to assess the willingness of Tsimane' and Western medical specialists to cooperate with each other. Results: We found that when asked about medical treatments, Tsimane' do not include Western treatments in their lists, however on their daily practices, Tsimane' do use Western treatments in combination with ethnomedical treatments. We also found that Tsimane' healers and Western doctors express willingness to cooperate with each other and to promote synergy between local and Western medical systems. Conclusion: Our findings contrast with previous research emphasizing the divide between local medical practitioners and Western doctors and suggests that cooperation between both health systems might be possible

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus
    corecore