10,639 research outputs found

    Two Notions of Naturalness

    Get PDF
    My aim in this paper is twofold: (i) to distinguish two notions of naturalness employed in BSM physics and (ii) to argue that recognizing this distinction has methodological consequences. One notion of naturalness is an "autonomy of scales" requirement: it prohibits sensitive dependence of an effective field theory's low-energy observables on precise specification of the theory's description of cutoff-scale physics. I will argue that considerations from the general structure of effective field theory provide justification for the role this notion of naturalness has played in BSM model construction. A second, distinct notion construes naturalness as a statistical principle requiring that the values of the parameters in an effective field theory be "likely" given some appropriately chosen measure on some appropriately circumscribed space of models. I argue that these two notions are historically and conceptually related but are motivated by distinct theoretical considerations and admit of distinct kinds of solution.Comment: 34 pages, 1 figur

    Naturalness, the Autonomy of Scales, and the 125 GeV Higgs

    Get PDF
    The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and that it was reasonable for physicists to endorse it. Its possible failure to be realized in nature, as suggested by recent LHC data, thus represents an empirical challenge to certain foundational aspects of our understanding of QFT. In particular, I argue that its failure would undermine one class of recent proposals which claim that QFT provides us with a picture of the world as being structured into quasi-autonomous physical domains

    Scientific Realism Made Effective

    Get PDF
    I argue that a common philosophical approach to the interpretation of physical theories -- particularly quantum field theories -- has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ``effective field theories,'' to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective field theories yields a robust foundation for a more refined approach to scientific realism in the context of quantum field theory. The paper concludes by briefly sketching some general morals for interpretive practice in the philosophy of physics

    Renormalization Group Methods

    Get PDF
    This is an introduction to renormalization group methods in quantum field theory aimed at philosophers of science. review path integral methods, the relationship between early renormalization theory and renormalization group methods, and conceptual shifts in thinking about quantum field theory spurred by the development of renormalization group methods

    Scientific Realism Made Effective

    Get PDF
    I argue that a common philosophical approach to the interpretation of physical theories -- particularly quantum field theories -- has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ``effective field theories,'' to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective field theories yields a robust foundation for a more refined approach to scientific realism in the context of quantum field theory. The paper concludes by briefly sketching some general morals for interpretive practice in the philosophy of physics

    Scientific Realism Made Effective

    Get PDF
    I argue that a common philosophical approach to the interpretation of physical theories -- particularly quantum field theories -- has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ``effective field theories,'' to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective field theories yields a robust foundation for a more refined approach to scientific realism in the context of quantum field theory. The paper concludes by briefly sketching some general morals for interpretive practice in the philosophy of physics

    Effects of External Radiation Fields on Line Emission - Application to Star-forming Regions

    Get PDF
    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background (CMB), as well as by a nearby active galactic nucleus (AGN). These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code Cloudy. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field, and show that about 60 percent of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.Comment: 12 pages, 7 figures, accepted for publication to Ap

    Influence of Dielectric Environment upon Isotope Effects onGlycoside Heterolysis: Computational Evaluation and AtomicHessian Analysis

    Get PDF
    Isotope effects depend upon the polarity of the bulk medium in which a chemical process occurs. Implicit solvent calculations with molecule-shaped cavities show that the equilibrium isotope effect (EIE) for heterolysis of the glycosidic bonds in 5′-methylthioadenosine and in 2-(p-nitrophenoxy)tetrahydropyran, both in water, are very sensitive in the range 2 ≤ ε ≤ 10 to the relative permittivity of the continuum surrounding the oxacarbenium ion. However, different implementations of nominally the same PCM method can lead to opposite trends being predicted for the same molecule. Computational modeling of the influence of the inhomogeneous effective dielectric surrounding a substrate within the protein environment of an enzymic reaction requires an explicit treatment. The EIE (KH/KD) for transfer of cyclopentyl, cyclohexyl, tetrahydrofuranyl and tetrahydropyranyl cations from water to cyclohexane is predicted by B3LYP/6-31+G(d) calculations with implicit solvation and confirmed by B3LYP/6-31+G(d)/OPLS-AA calculations with averaging over many explicit solvation configurations. Atomic Hessian analysis, whereby the full Hessian is reduced to the elements belonging to a single atom at the site of isotopic substitution, reveals a remarkable result for both implicit and explicit solvation: the influence of the solvent environment on these EIEs is essentially captured completely by only a 3 × 3 block of the Hessian, although these values must correctly reflect the influence of the whole environment. QM/MM simulation with ensemble averaging has an important role to play in assisting the meaningful interpretation of observed isotope effects for chemical reactions both in solution and catalyzed by enzymes
    • …
    corecore