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Abstract My aim in this paper is twofold: (i) to distinguish two notions of
naturalness employed in Beyond the Standard Model (BSM) physics and (ii)
to argue that recognizing this distinction has methodological consequences.
One notion of naturalness is an “autonomy of scales” requirement: it prohibits
sensitive dependence of an effective field theory’s low-energy observables on
precise specification of the theory’s description of cutoff-scale physics. I will
argue that considerations from the general structure of effective field theory
provide justification for the role this notion of naturalness has played in BSM
model construction. A second, distinct notion construes naturalness as a sta-
tistical principle requiring that the values of the parameters in an effective
field theory be “likely” given some appropriately chosen measure on some ap-
propriately circumscribed space of models. I argue that these two notions are
historically and conceptually related but are motivated by distinct theoretical
considerations and admit of distinct kinds of solution.

Keywords Naturalness · Effective Field Theory · Beyond the Standard
Model · Multiverse

1 Introduction

Since the late 1970s, attempting to satisfy a principle of “naturalness” has been
an influential guide for particle physicists engaged in constructing speculative
models of Beyond the Standard Model (BSM) physics. This principle has both
been used as a constraint on the properties that models of BSM physics must
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possess and shaped expectations about the energy scales at which BSM physics
will be detected by experiments. The most pressing problem of naturalness in
the Standard Model is the Hierarchy Problem: the problem of maintaining a
scale of electroweak symmetry breaking (EWSB) many orders of magnitude
lower than the scale at which physics not included in the Standard Model
becomes important.1 Models that provided natural solutions to the Hierarchy
Problem predicted BSM physics at energy scales that would be probed by
the LHC, and many particle physicists expected BSM physics to be detected.
These expectations have been dashed by the first two runs of the LHC. The
LHC is now probing energy scales above those at which many natural BSM
models predicted new physics, but no new physics has been detected. This has
led many in the particle physics community to reflect on what, precisely, the
conceptual content of the naturalness principle is and what continuing role,
if any, it ought to play in guiding current and future theorizing about BSM
physics. One can usefully group the prevalent positions on the topic into three
categories.2

1. The Standard Model is unnatural and naturalness should play no role in
the future of high-energy physics theorizing.

Advocates of this position argue that not only have the recent LHC results
demonstrated that there is no natural explanation of the stability of the
EWSB scale, we were mistaken to have thought there was any property of
the EWSB scale crying out for explanation in the first place: the natural-
ness principle was ill-motivated from its inception. There have long been
pockets of skepticism about the motivation for and influence of the natural-
ness principle; particularly trenchant expressions of such skepticism can be
found in [53] and, for post-LHC perspectives, [45] and especially [54]. It is
also the case that even though many in the particle physics community have
adopted naturalness as an important guide to model construction, many
of the very same members of that community have also long been willing
to seriously entertain certain unnatural models of BSM physics. This is
illustrated by the influence of models with a high scale of supersymmetry
breaking, such as models with “split supersymmetry”, and related models
[66,39,67,6].

2. The Standard Model is unnatural but future BSM models should explain
the EWSB scale in a way that also explains why no natural explanation
was forthcoming.

1 One sometimes calls this problem the “little Hierarchy problem,” reserving the title
“Hierarchy problem” for the problem of the hierarchy between the EWSB scale and the
Planck scale. Nothing hinges on this distinction in this paper.

2 I neglect here the position that advocates simply staying the course, preserving the
emphasis that has been placed on naturalness at the expense of focusing on more complicated
natural extensions of the Standard Model.
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Advocates often accept that the naturalness principle was well-motivated
within the context of effective field theory and that we were justified in
seeking a natural explanation of the EWSB. However, they also accept that
recent LHC results demonstrate that no natural explanation of the EWSB
is likely and that a different, “unnatural” explanation should be sought. For
some, this is a role that a multiverse can play in particle physics. For exam-
ple, Giudice states that “It is conceivable that the LHC will find that the
Higgs mass does not respect the naturalness criterion, just like (probably)
the case of the cosmological constant. Accepting this possibility, however,
does not imply that we can simply ignore the issue. . . if we accept Unnat-
uralness, we have to address the question of why the Higgs is unnatural.
At the moment, the multiverse offers the most plausible answer at our dis-
posal” [37, p. 4]. According to this position, turning to some version of a
multiverse to explain the EWSB amounts to giving up on finding a natural
explanation of the stability of the EWSB.3

3. A multiverse provides a novel setting in which we can provide a natural
solution to the Hierarchy Problem and other problems of naturalness.

While the second position argues that pursuing a statistical explanation
of the EWSB scale in a multiverse amounts to giving up on naturalness,
this third position sees the multiverse as offering the possibility of what
particle physicists have sought for decades: a natural solution to the Hier-
archy problem and other problems of naturalness. This position relies on
a particular, statistical notion of naturalness. According to this notion a
property of a theory is considered natural if and only if it is “likely” or
“not improbable” according to some chosen probability distribution.

It is this third stance that receives extended critical scrutiny in this paper.
The plan of the paper is as follows. In section 2, after a selective review

of two episodes from the “pre-history” of naturalness, I present a condensed
version of an argument I have made elsewhere [69] that the best way to un-
derstand the content of the naturalness principle is as a prohibition of sensi-
tive dependence of low-energy measurable quantities on comparatively high-
energy physics. I argue this understanding renders naturalness arguments well-
motivated within an effective field theory context and provides a single notion
on which one can ground several apparently distinct formulations of natural-
ness in the physics literature. In section 3, I briefly review the development of
an alternative, statistical notion of naturalness that began in the 1990s. This
development has made possible the recent proposal that naturalness problems
could be embedded and given natural solutions within a multiverse. In sec-
tion 4, I examine this proposal in greater detail and argue that the statistical
notion of naturalness that it employs has little to do with the notion of natu-
ralness that can actually be motivated by considerations drawn from effective
field theory. I conclude with some brief remarks further distinguishing these

3 This position is also described in [64,11,7], among others.
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two notions of naturalness and suggest that recognizing this distinction un-
dermines one recently suggested source of evidential support for a multiverse.

2 Naturalness and the autonomy of scales

I want to begin by briefly describing two important episodes from 20th century
physics in which different problematic aspects of elementary scalar particles
were highlighted. These are the discovery by Weisskopf that the self-energy
contribution to the mass of elementary scalar particles is quadratically diver-
gent, and the much later recognition by Wilson that particle masses do not
receive large radiative corrections if their mass terms are “protected” by a
symmetry. My interest in these two episodes is decidedly Whiggish: I describe
them here because both of these aspects were later incorporated into the notion
of naturalness as distinct ways of describing what it is that makes elementary
scalars “unnatural”.

2.1 A brief pre-history

The recognition that there is something uniquely problematic about quan-
tum field theories that contain elementary scalar particles goes back at least
to Weisskopf [65]. Weisskopf was investigating the self-energy contribution to
the mass of the electron and found that while the self-energy of the electron
was logarithmically divergent, the self-energy for a charged scalar particle di-
verged quadratically.4 With these results in hand, Weisskopf ventured “A few
remarks. . . about the possible significance of the logarithmic divergence of the
self-energy for the theory of the electron” [p. 75]. He begins his remarks by

expanding the self-energy term, denoted W , in powers of e
2

hc , yielding the series
expansion

W =
∑
n

Wn =
∑
n

cnmc
2
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e2
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)n [
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(
h

mca

)k]
k ≤ n

with cn unspecified constants and a a length scale introduced to keep the
logarithm finite. Weisskopf expresses the hope that this sum will converge if

δ =

(
e2

hc

)[
ln

(
h

mca

)]
< 1

in which case the self-energy contribution to the electron mass would be simply
W = mc2O(δ): the electron mass multiplied by a term of order δ.

On the assumption that the self-energy contribution is in fact given by
W = mc2O(δ), Weisskopf then aims to define an analogue of the classical

4 Like many such calculations in the 1930s, Weisskopf made use of the hole-theoretic
formalism of Dirac; see [56, ch. 2] for calculational methods in the 1930s.
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electron radius by setting the self-energy W = mc2. This is satisfied if the
analogue of the classical electron radius, the “critical length”, is

a ∼ h

mc
· exp

(
−hc
e2

)
The significance of the critical length, according to Weisskopf, is that it indi-
cates the length scale at which a theory becomes inconsistent and new physics
must be present.5

Turning his attention to a quantum field theory of elementary charged
scalar particles, Weisskopf notes that “the situation is entirely different” than
the case of the electron: the self-energy contribution to the mass of the scalar
particle diverges quadratically. Using the same method as above to establish
a critical length for a theory containing elementary charged scalar particles,
Weisskopf determines that the critical length must be much larger than for
the theory containing only electrons and positrons:

a ∼
(
hc

e2

)− 1
2
(
h

mc

)
Weisskopf concludes his remarks as follows:

This may indicate that a theory of particles obeying Bose statistics must
involve new features at this critical length, or at energies correspond-
ing to this length; whereas a theory of particles obeying the exclusion
principle is probably consistent down to much smaller lengths or up to
much higher energies [65, p. 75].

It is interesting that in addition to being the first to recognize that the self-
energy contribution to the mass of an elementary scalar particle is quadrati-
cally divergent, Weisskopf also drew upon those calculations to extract from
the breakdown of the scalar theory at a given length scale a prediction about
the length scale at which new physics could be expected to exist: the scale a
such that for lengths shorter than a, Weisskopf conjectured that the series ex-
pansion of the self-energy was divergent.6 It is also worth noting that although
the more modern understanding of quantum field theory in which the concept
of naturalness developed was quite different from Weisskopf’s own, it is still
extremely common to find elementary scalar particles described as unnatural
precisely because their mass terms are quadratically divergent.7 Indeed, Zee
refers to the quadratic divergence of elementary scalar particle masses, which
he equates with the Hierarchy problem, as the “Weisskopf phenomenon” [72,
p. 419].

5 Weisskopf is here considering a theory to be inconsistent if the series expansion of the
self-energy contribution W does not converge.

6 This is not to suggest that Weisskopf’s treatment of the scalar theory is unique in this
regard; as shown above, he makes a similar argument in the case of the purely fermionic
theory.

7 For example, see [52,50,9,62,10,72].
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The second pre-historical episode is Ken Wilson’s recognition in [70] that
elementary scalar particle mass terms diverge more severely than mass terms
of fermions or gauge bosons because the scalar mass terms do not break any
internal symmetries of a quantum field theory. This recognition comes in a
paper in which Wilson was interested in applying the renormalization group
(RG) methods of Gell-Mann and Low [35] to the strong interactions; it is
worth providing a brief review of the paper in order to offer some context for
Wilson’s remark.

Wilson analyzes the behavior of the RG equation

d

d ln(λ)
g(λ) = β(g(λ))

for the case of a hypothetical theory containing a single scale-dependent cou-
pling g(λ). He approaches the RG equation as the equation of motion for a
general dynamical system and focuses on its possible asymptotic behavior in
the infrared (IR) (λ → 0) and the ultraviolet (UV) (λ → ∞) regions. He al-
lows that the asymptotic behavior of the RG may be (i) a fixed point, i.e. the
coupling g(λ) hits a fixed point g∗ at which β(g∗) = 0, or (ii) a limit cycle, in
which case the beta function approaches a periodic function with the period
given by a function of the scale λ and the values of the couplings oscillate per-
petually (this situation requires extending the RG analysis to theories with
more than one coupling). Only situation (i) is relevant for our purposes and I
will not discuss situation (ii).

In examining the possible asymptotic fixed point solutions of the RG, Wil-
son further distinguishes between two physical possibilities: (a) it may be the
case that weak and electromagnetic corrections to strong interaction processes
remain small up to arbitrarily high energies (i.e. the weak and electromagnetic
couplings remain small relative to the strong interaction coupling), in which
case there is a theory that treats only the strong interactions that remains at
least approximately valid for arbitrarily high momentum processes; or (b) there
is an energy scale Λ at which the weak and electromagnetic corrections be-
come too large to be treated perturbatively (i.e. the weak and electromagnetic
couplings become comparable in size to the strong coupling), which means
that any theory that treats the strong interactions in isolation is valid only for
momenta λ� Λ.

Wilson begins by assuming that possibility (a) obtains and gives a more
detailed, largely qualitative analysis of the possible fixed points of the RG
equation for the coupling g(λ).8 He asks the reader to imagine that the beta
function has multiple asymptotic fixed points in the IR and the UV; the allowed
IR fixed points are g(0) = 0 and g(0) = x2, while the allowed UV fixed
points are labeled g(∞) = x1 and g(∞) = x3. Wilson then partitions the
possible values of g(λ) into basins of attraction. He considers first the basins
of attraction for the UV fixed points: initial values of the coupling g(λ) in the

8 See [70, pp. 1825-6] for the assumptions about the behavior of the β-function underlying
his analysis. He notes that “there is no way of knowing whether these assumptions are true
for quantum electrodynamics or any other given field theory.”
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range 0 < g(λ) < x2 all flow to the value x1 as λ → ∞, while values in the
range x2 < g(λ) < x3 will flow to x3 as λ→∞.

Fig. 1 Reproduced from [70].

Turning to the IR fixed points, initial values of g(λ) that lie in the range
0 < g(λ) < x1 flow to 0 as λ → 0, while initial values x1 < g(λ) < x3 flow to
x2 as λ→ 0.

However, Wilson takes his analysis of the asymptotic UV behavior of the
RG equation to suggest that the more plausible physical situation is possibility
(b): there exists a UV cutoff scale Λ� 1 GeV at which any theory that treats
the strong interactions in isolation necessarily breaks down. To make this ar-
gument, Wilson turns from a hypothetical theory of the strong interactions to
quantum electrodynamics, while imagining that the analysis of the asymptotic
UV behavior of the RG equations represented by Fig. 1 above holds for both
cases.9

Wilson first points out that the validity of perturbation theory in familiar
applications of quantum electrodynamics justifies the assumption that the the
initial value of the scale-dependent coupling g(λ) is small for λ � Λ, i.e.
sufficiently close to 0 that it lies in the range 0 < g(λ) < x2. He then argues
that his analysis illustrates that the coupling in quantum electrodynamics g(λ)
flows to the fixed-point value x1 as λ → ∞, and that this fixed-point value

9 Of course, we now recognize this was a mistake. Quantum chromodynamics, the theory
of the strong interaction, is asymptotically free, while quantum electrodynamics is not.
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is independent of the value of g(λ) at low energies.10 He concludes that “this
suggests that all particles will couple strongly to photons at sufficiently high
momenta; but this would mean that electrodynamics and strong interactions
would mix strongly, suggesting that pure electrodynamics is valid only below
a cutoff momentum Λ” [70, p. 1832]. Referring back this analysis, Wilson
reiterates this at the outset of the discussion in which he makes his remark
about the mass terms of elementary scalar particles:11

Analysis of the renormalization group for electrodynamics shows that
the λ-dependent charge eλ increases with λ, eventually becoming of
order 1. By this is meant that no matter how small the renormalized
charge e is, eλ becomes of order some fixed number independent of e if
λ is large enough.12 This suggests that there is a cutoff Λ beyond which
radiative corrections to strong interactions are too large to be treated
as a perturbation. So it will be assumed here that the theory of strong
interactions in isolation is valid only below the cutoff Λ [70, p. 1838].

Wilson thus treats possiblity (b) as the more physically likely one and explores
what an RG analysis can teach us about the behavior of the strong interaction
at energies E� Λ.

Wilson also recognizes that the existence of such a UV cutoff would in-
validate his above analysis of the UV fixed point structure. The reason is
that his analysis was based on the assumption that the strong interactions
could be treated in isolation up to arbitrarily high energy – i.e. on the as-
sumption of possiblity (a) – and if possibility (b) obtains that is no longer the
case. Instead, Wilson assumes that physical processes at energies higher than
the cutoff are governed by a more complicated theory in which the strong,
electromagnetic, and weak interactions become unified; it is this theory that
determines the value of the strong coupling at the cutoff scale g(λ = Λ). This
means that on the one hand, the RG equation for g(λ) will receive large weak
and electromagnetic corrections as λ approaches the cutoff Λ, since the weak
and electromagnetic couplings become comparable in size to the strong cou-
pling for λ ∼ Λ. On the other hand, there is no reason to assume that as
λ → ∞ the asymptotic RG behavior of the more complicated Grand Unified
Theory (GUT) that takes over above the cutoff scale Λ will be similar to the
asymptotic RG behavior of the theory that treated the strong interactions in
isolation. Accordingly, Wilson turns his focus to the asymptotic IR behavior
of the RG equation for g(λ).

It is at this point that Wilson makes a remark about a property that is
unique to the mass terms of elementary scalar particles. He begins by not-
ing that RG transformations leave the internal symmetries of a quantum field
theory unbroken: if the set of couplings hnλ that would break the symmetry

10 In terminology that is now familiar, but which Wilson introduces immediately prior to
this discussion, this is just to say that x1 is an ultraviolet stable fixed point.
11 Wilson also cites [35] and [14] in support of the quotation below.
12 Wilson has elsewhere defined the “renormalized charge” as the charge renormalized at
λ = 0.
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are zero at any value of λ then these couplings remain zero at all values of
λ. This requires that any radiative corrections to a symmetry-breaking cou-
pling hnλ must be proportional to the parameter hnλ itself. This ensures that
when hnλ = 0, any possible radiative corrections are also zero and thus that
changing the scale at which the coupling is defined from λ→ λ′ will not break
any internal symmetries of the theory. This is what it means for a coupling
to be “protected” by a symmetry: it is “protected” from having its value al-
tered significantly by radiative corrections. In particular, it is “protected” from
acquiring a non-zero value purely from radiative corrections.

Wilson then notes that to account for symmetries that are very weakly
broken at high energies λ ∼ Λ but strongly broken at lower energies λ ∼ 1
GeV, it must be the case that some symmetry-breaking couplings are very
small at λ ∼ Λ but grow to O(1) as λ→ 1 GeV. This is only possible if those
couplings do not receive large radiative corrections when λ ∼ Λ, and that
requires that those couplings be “protected” by a symmetry. In particular,
Wilson says that if a quantum field theory describes light elementary particles,
their mass terms must be “protected” by some symmetry:

. . . all generalized mass terms must break an internal symmetry. A gen-
eralized mass term is any coupling which causes particles to have finite
mass rather than zero mass. It is interesting to note that there are no
weakly coupled scalar particles in nature; scalar particles are the only
kind of free particles whose mass term does not break either an internal
or a gauge symmetry.
This discussion can be summarized by saying that mass or symmetry-
breaking terms must be “protected” from large corrections at large mo-
menta due to various interactions (electromagnetic, weak, or strong). . . The
mass terms for the electron and muon and the weak boson, if any, must
also be protected. This requirement means that weak interactions can-
not be mediated by scalar particles [70, p. 1840, emphasis added].

After stating that the weak interactions cannot be mediated by scalar particles,
Wilson states that “this rules out” two such models: the models of [47] and
[18].

Following ’t Hooft [60], it is now common to hear that the fact that mass
terms of elementary scalar particles are not “protected” by any symmetry
makes those masses unnatural; it is noteworthy that Wilson recognized that
this “requirement” was not met by elementary scalar masses already in 1971.
More interesting is that he put this requirement to use as a criterion of theory
selection, declaring that it rendered unviable quantum field theories in which
the weak interactions were mediated by elementary scalar particles. This, too,
is a familiar feature of the role that naturalness has played in more modern
discussions.

Let me conclude this pre-historical discussion with a few remarks. First,
I have not meant to suggest that these were the only pre-historical episodes
important for shaping the modern understanding of naturalness. In particular,
aesthetic arguments were absent from my discussion. Famously, Dirac believed
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that any large numbers must be explicable in terms of simple mathematical
relations between parameters of O(1), a requirement that he motivated on aes-
thetic grounds [28]. I have omitted discussion of this for two reasons. The first
is because Dirac’s concern was about large numbers in general, and made no
mention of uniquely problematic features of elementary scalars; in this sense,
there is a more direct connection between the observations of Weisskopf and
Wilson and the later conception of naturalness. The second is because the
core of my argument focuses on the construction and evolution of quantita-
tive measures of naturalness, and in that process the aesthetic motivation for
naturalness played a less central role than the physical arguments described
above.

Second, my aim has not been to suggest that Weisskopf, Wilson, or others
who noted that elementary scalar particle masses had uniquely problematic
properties, prior to the work of Susskind [58] and ’t Hooft [60], were operat-
ing with the later, fully developed conception of naturalness that came to be
associated with those properties. My aim has rather been to present evidence
that the later conception of naturalness, and subsequent quantifications of that
notion, emerged from a proximate pre-history of discussions in which elemen-
tary scalars were recognized to be uniquely problematic on primarily physical
grounds and not, for example, solely or even primarily based on aesthetics. In
particular, my aim has been to demonstrate the following:

1. The mass terms of elementary scalar particles have been recognized as
uniquely problematic on the basis of physical arguments since at least the
late 1930s.

2. Two of the problematic features now commonly invoked to explain what
is unnatural about elementary scalar mass terms – quadratic sensitivity
to the cutoff scale and failure to be protected by any symmetry – were
identified long prior to any explicit concept of naturalness.

3. The identification of these features was immediately put to use in predicting
new physics and motivating theory selection, roles similar to those that
the concept of naturalness has played in more contemporary discussions.
Weisskopf argued that the quadratic sensitivity of an elementary scalar
mass could be turned into an argument for a “critical length” at which
new physics needed to appear to ensure that the self-energy contribution
to the scalar mass did not become unacceptably large, and Wilson drew
upon the fact that elementary scalar mass terms are not protected by any
symmetry to rule out models that contained elementary scalars.

2.2 Naturalness and effective field theory

It was not until the end of the 1970s that an explicit concept of naturalness was
first introduced, albeit in two different guises, in papers by Susskind [58] and
’t Hooft [60]. By this time it was widely presumed in the physics community
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that there existed an energy scale Λ – a UV cutoff – near which the Standard
Model becomes inapplicable, and that physical processes at energies above
Λ are governed by a new quantum field theory; put otherwise, the physics
community had come to believe that what I labeled Wilson’s possibility (b)
was likely realized in nature.
Susskind introduces the concept as follows:

Aside from the subjective esthetic argument, there exists a real dif-
ficulty connected with the quadratic mass divergences which always
accompany scalar fields. These divergences violate a concept of natu-
ralness which requires the observable properties of a theory to be stable
against minute variations of the fundamental parameters [58, p. 2619].

By “fundamental parameters” Susskind means the couplings defined at the
scale of the UV cutoff Λ. Elementary scalar particles are unnatural because
their measurable, physical masses (which, for illustration, Susskind imagines to
be ∼ 1 GeV) depend very sensitively on the value of the effective, running mass
at the cutoff scale (which Susskind imagines to be the Planck scale Λ = 1019

GeV).
Let me pause here for one last historical aside. Susskind attributes this

particular concept of naturalness to Wilson. In light of that, it is perhaps
worth noting another remark Wilson makes in [70, pp. 1829-30]. Wilson is
describing a scenario in which a coupling g(λ) approaches an ultraviolet stable
fixed point x1 as λ → ∞. Imagine two possible values of the coupling at low
energy, g1(λ = m) and g2(λ = m), such that the difference between g1 and g2
is large. Then as λ→∞, that difference will be suppressed (“deamplified” in
Wilson’s terminology) and the difference between the two couplings for λ� m
will be small. Conversely, this entails that very small changes in the value of
a coupling at very high energies will translate into very large changes in its
value at low energies. Wilson describes this as “a problem,” continuing that
“physically the qualitative nature of a given amplitude should be determined
by a qualitative knowledge of the physical couplings which determine that
amplitude. If one has to specify a coupling constant to 1% accuracy in or-
der to determine the amplitude to 50% accuracy, there is something wrong.”
Wilson’s remark is made while evaluating a different a physical situation than
Susskind is discussing – in particular, Wilson is not at that point talking about
elementary scalars nor assuming the existence of a UV cutoff – but I think
Wilson’s claim that there is “something wrong” with a sensitive dependence of
low-energy observables on the precise value of high-energy couplings suggests
that the concept of naturalness attributed to him by Susskind in 1979 had at
least begun to take shape already in 1971.

Let us now return from this historical aside to the first introductions of an
explicit notion of naturalness in the late 1970s. In [60] the principle introduced
by ’t Hooft under the label “naturalness” appears, at least superficially, to be
a distinct notion from that introduced by Susskind. ’t Hooft introduces it as
“an order-of-magnitude restriction that must hold at all energy scales µ” [p.
135] and motivates it by invoking our experience with solid state physics; in
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particular, the relative insensitivity of macroscopic properties of bulk matter to
small variations in the parameters characterizing its microscopic constituents.
He goes on:

. . . it is unlikely that the microscopic equations contain various free
parameters that are carefully adjusted by Nature to give cancelling
effects such that the macroscopic systems have some special properties.
This is a philosophy which we would like to apply to the unified gauge
theories: the effective interactions at a large length scale, corresponding
to a low energy scale µ1, should follow from the properties at a much
smaller length scale, or higher energy scale µ2, without the requirement
that various different parameters at the energy scale µ2 match with
an accuracy of the order of µ1

µ2
. That would be unnatural. . . We now

conjecture that the following dogma should be followed:

at any energy scale µ, a physical parameter or set of physical parameters
αi(µ) is allowed to be very small only if the replacement αi(µ) = 0 would
increase the symmetry of the system.

In what follows this is what we mean by naturalness [60, pp. 135-6].

At first glance, Susskind and ’t Hooft seem to be describing different prin-
ciples. Susskind’s concern is that the self-energy contribution to the physical
mass of the elementary scalar requires the effective mass at the cutoff scale to
be very finely tuned; this, in turn, entails that the measurable physical mass
will be unstable against “minute variations” of the effective mass at the cutoff
scale. He says nothing about symmetry. ’t Hooft, on the other hand, offers
as a necessary condition for a parameter to be natural that the parameter be
“protected” by a symmetry; he says nothing about quadratic divergences or
fine-tuning.13 In what sense, if any, can these two early formulations have been
motivated by a univocal underlying intuition about naturalness?

I will shortly argue that these apparently distinct formulations of natural-
ness can be motivated most compellingly by understanding them as capturing
distinct aspects of an underlying expectation that quantum field theory re-
spect an “autonomy of scales” principle. However, I want first to introduce
one more common way of phrasing the content of the naturalness principle.
This is the idea that a quantum field theory is natural if and only if all dimen-
sionless parameters and ratios of parameters either are, or can be explained
in terms of, parameters that are O(1), a notion that Wells [68] calls “Abso-

13 Indeed, ’t Hooft’s emphasis on the role of symmetry in his notion of naturalness has led
Grinbaum to suggest that “based upon ’t Hooft’s definition, [naturalness] could have received
a. . . conceptual foundation similar to that of symmetry” [41, p. 616]; see also [43] in which
the “conventional” approach to naturalness is described akin to a symmetry principle. I do
not think this kind of justification for naturalness is compelling, but these remarks illustrate
the extent to which ’t Hooft’s notion of naturalness has become identified with his remarks
about symmetries.
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lute Naturalness”.14 For example, Zee describes the notion of naturalness in
the particle physics community as tantamount to an expectation“that dimen-
sionless ratios of parameters in our theories should be of order unity. . . say
anywhere from 10−2 or 10−3 to 102 or 103” [72, p. 419]. Stated simply as a
principle about the expected size of dimensionless parameters appearing in a
Lagrangian, this strikes some physicists as numerology. For example, Hossen-
felder has published a blog posting titled “To understand the foundations of
physics, study numerology” that criticizes the influence of naturalness-based
reasoning in high energy physics [44]. Even Wilson became suspicious of the
idea that dimensionless parameters in a quantum field theory have a “natural”
size of O(1) toward the end of his career, stating that the claim that small
scalar masses would be unnatural “makes no sense when one becomes familiar
with the history of physics. There have been a number of cases where numbers
arose that were unexpectedly small or large” [71, p. 13].

Setting aside for the moment how one might justify a requirement that all
dimensionless parameters be of O(1), it also seems as distinct from Susskind
and ’t Hooft’s formulations of naturalness as those two formulations seem
from each other. This raises two questions: how can these formulations of
naturalness be justified, and what is the relationship between them?

In [69], I have argued that the answers to these two questions are closely
related. One can understand these apparently distinct notions of naturalness
as highlighting distinct ways that elementary scalar masses violate an under-
lying “autonomy of scales” expectation: for physical scales EL and EH that
are separated by several orders of magnitude, EL � EH , physical processes
(couplings, observables) at EL should be relatively insensitive to precise char-
acterizations of physical processes (couplings, observables) at EH .15 This, in
turn, offers the most compelling justification for the belief in and application of
various formulations of naturalness in the physics literature: to the extent that
the structure of effective field theory justifies the autonomy of scales expecta-
tion, then it justifies to the same extent the seemingly distinct formulations
of naturalness. To appropriate the famous picture of Descartes: the whole of
naturalness is like a tree. The roots are effective field theory, the trunk is the
autonomy of scales, and the branches emerging from the trunk are the pre-
cisifications, which may be reduced to three principal ones, namely quadratic
divergences, symmetry, and dimensionless parameters of O(1).

One can motivate the three formulations of naturalness discussed above
by invoking the autonomy of scales as follows.16 Susskind’s formulation of
naturalness as requiring “the observable properties of a theory to be stable

14 Wells offers an interesting counterfactual history that argues strict insistence on Ab-
solute Naturalness could have grounded a series of inferential steps leading from quantum
electrodynamics to the Standard Model.
15 This understanding of naturalness is also advocated in [36,37,11,38].
16 What follows is not primarily aimed at historically accurate exigesis: whether Susskind

or ’t Hooft, or others actually were motivated by an autonomy of scales expectation is not
of primary importance here. That said, I think there is fairly good evidence that they were,
some of which will be briefly presented here.
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against minute variations of the fundamental parameters” is straightforward
to understand as formalizing an autonomy of scales expectation: indeed, given
that he formulates the naturalness principle in a framework that assumes
a “fundamental” scale Λ and a “light” scale EL with EL � Λ, Susskind’s
formulation of naturalness essentially is what I described as the autonomy of
scales expectation.

The relationship between ’t Hooft’s formulation and an autonomy of scales
expectation is prima facie murkier, but examining ’t Hooft’s own stated moti-
vation for introducing his notion of naturalness is clarifying. As noted above, ’t
Hooft begins by stating that our experience with theories of solid state physics
suggests it is unlikely that the macroscopic properties of bulk matter depend
sensitively on relationships between parameters in the theory governing that
matter’s microscopic constituents. He then states that this feature of solid
state physics should be satisfied by effective field theories.17 He translates the
solid state physics intuition into the quantum field theoretic framework as a
requirement that the physical processes (couplings, observables) in a theory
characterizing physics at the scale EL should not depend sensitively on rela-
tionships between parameters defined at a much higher scale Λ; the parameters
αi(Λ) in the effective field theory characterizing physical processes at Λ should
not have to be carefully set to cancel with one another in order for the the-
ory characterizing physics at EL � Λ to be empirically adequate. The rough
degree to which such a cancellation would be unnatural is given by the ratio
EL/Λ, and thus is determined by how many orders of magnitude separate the
scales in question.

It is this kind of delicate cancellation between properties of effective field
theories characterizing physics at widely separated scales that is unnatural ac-
cording to ’t Hooft. He then imposes the symmetry requirement as a necessary
condition for ensuring that an effective field theory not contain any parameters
that require such unnatural cancellations between different scales.18

Finally, the claim that a parameter in an effective field theory is natural if
and only if it is of O(1) can be motivated by appeal to the autonomy of scales
as follows. Consider an effective field theory of a real scalar field defined at the
UV cutoff scale Λ:

S =

∫
d4x

1

2
(∂µφ)2 +

∑
n≥2

gnOn

17 ’t Hooft assumes that all the gauge theories he is investigating in [60] have a UV cutoff,
which he refers to as the “Naturalness Mass Breakdown Scale” and estimates to be at about
1 TeV.
18 A referee suggests that ’t Hooft’s claim that the smallness of a parameter must be

accounted for with a symmetry was motivated by reflection on the central methodological
role that symmetries occupy in constructing quantum field theories. I think this would have
been a strong argument for ’t Hooft to have given, but I am unable to find textual support
for it in [60]. However, I think it is an interesting and plausible conjecture about ’t Hooft’s
attitude toward quantum field theories at the time and I mention it here as an invitation
for interested parties to take up the question.
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where the operators On have mass dimension n and are products of scalar field
operators and their derivatives. To ensure that the action S has the appropriate
units, the couplings gn have the form anΛ

−(n−4) where an is a dimensionless
number. Dimensional analysis allows one to estimate, to first order in pertur-
bation theory, the contribution of any operator On to a scattering amplitude
for particles with external momenta EL:∫

d4x gnOn ∼ an

(
EL
Λ

)(n−4)

Once the external momenta of the particles and the UV cutoff scale are spec-
ified, one has a qualitative picture of the dominant interactions determining
the scattering amplitude at a given scale EL, along with a rough quantitative
estimate. In particular, one can see that interactions On with mass dimension
n > 4 will be heavily suppressed at energies EL � Λ: these operators become
important only for characterizing physical processes at high energies and their
contributions to low-energy processes can be ignored. On the other hand, in-
teractions with mass dimension n < 4 contribute more strongly at low energies
than at high energies; they are important for characterizing low-energy phys-
ical processes, but become unimportant at very high energies. Throughout
many areas of physics this type of dimensional analysis argument is ubiqui-
tous, and is typically reliable.19

These dimensional analysis estimates of the contributions of interactions
at different scales all depend on the dimensionless numbers an being roughly
of O(1). If those parameters are allowed to be very small or very large, then
the discussion above is unsound: the sensitivity of scattering amplitudes at
EL � Λ to, say, the operator On=8 can’t be reliably estimated based solely
on the scales involved if an=8 is allowed to be of O(1010). The expectation
that dimensionless parameters in a quantum field theory should be of O(1)
can thus be justified on autonomy of scales grounds: one ought to be able to
give a qualitatively accurate characterization of the interactions on which a
scattering amplitude will depend based solely on the scales involved in the
problem.

In response to the question about the relationship between these appar-
ently distinct formulations of naturalness, then, I claim that they can all be
understood as capturing different manifestations of an underlying expecta-
tion of the autonomy of scales in effective field theory. Turning to the second
question: understood as a principle about the autonomy of scales, how well
motivated is naturalness as a guide to BSM model construction?

I think that understood in this fashion there is – or at least, there was
prior to recent LHC results – a reasonably good, but defeasible, motivation
for employing naturalness as a guide when constructing BSM models. The
motivation stemmed in part from structural features of effective field theory
and in part from induction on our experience with naturalness-based reasoning

19 See [26] for a complementary discussion of the way that dimensional analysis informs
intuitions about naturalness.
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in particle physics in the 20th century. The structural features that I have in
mind are the the applicability of the Appelquist-Carazzone decoupling theorem
and, more generally, the applicability of renormalization group methods. The
experiences with naturalness-based reasoning in particle physics that I have
in mind are (i) all couplings in the Standard Model are natural except for
the mass of the Higgs boson, and (ii) in several important episodes in 20th
century particle physics, successful predictions either could have been made or
were in fact made based on expectations of the autonomy of scales similar to
those motivating naturalness requirements.20 The particular episodes I have
in mind are the prediction of the positron, the prediction of the mass of the
ρ-meson, and the prediction of the mass of the charm quark. Since these are
discussed in some detail by others [36,50,69], I will focus on the motivations
coming from the structure of effective field theory.

Renormalization group methods, at their core, are methods for evaluating a
physical process involving many scales by systematically analyzing the process
one scale at a time. Suppose one has a quantum field theory, given by an action
SΛ and defined up to a chosen UV cutoff Λ, and they are interested in studying
physical processes at energies EL � Λ. The theory defined up to Λ may contain
degrees of freedom that are irrelevant for characterizing processes at EL, and
it is typically the case that calculations are more complicated in the theory
defined up to Λ. Renormalization group methods allow us to separate the
scales of the problem into “momentum slices” of width dΛ and systematically
analyze the problem one “slice” at a time.

This is done by evaluating the functional integral associated with SΛ be-
tween Λ and Λ−dΛ. As one iterates this process one may encounter thresholds,
such as the masses µ of heavy particles, at which some set of fields is “inte-
grated out” of the theory entirely, producing a new effective theory containing
only “light” degrees of freedom and applicable only up to a new cutoff energy
µ, with EL � µ < Λ. Renormalization group methods tell us that, in general,
the high energy degrees of freedom that have been integrated out contribute
to the resulting low-energy effective theory through (i) modifying the values of
the couplings in the low-energy theory and (ii) small corrections to scattering
amplitudes calculated in the low-energy theory for particles with external mo-
menta � µ. The widespread applicability of renormalization group methods
justifies a general expectation that the characterization of physical processes
at low energies EL � Λ will not depend sensitively on the structure of the
theory at the cutoff scale Λ.

A related result sometimes invoked to justify the expectation of the au-
tonomy of scales in effective field theory is the decoupling theorem, which
states precise conditions under which one can integrate heavy fields out of a
functional integral and produce a consistent, low-energy effective field theory
which, as above, will have altered couplings and small corrections to scatter-
ing amplitudes calculated in the low-energy theory [5,49,20,48]. Dawson, for

20 The claim that all couplings of the Standard Model except the Higgs boson mass are
natural is false if one is inclined to consider the cosmological constant as a Standard Model
coupling.
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example, has said that the problem with the Higgs boson mass stems from
a failure to obey the decoupling theorem: “The Higgs boson mass diverges
quadratically! The Higgs boson thus does not obey the decoupling theorem
and this quadratic divergence appears independent of the mass of the Higgs
boson” [22]. As I will discuss below, Dawson’s statement is, as a technical
matter, not correct but illustrates the idea that the problem with elementary
scalar particle masses is that they seem to violate the spirit, if not the letter,
of the structural features that underwrite the autonomy of scales in effective
field theories.

Renormalization group methods and the decoupling theorem certainly do
license some expectation that physical processes at low energies will be largely
insensitive to the detailed structure of the effective field theory at much higher
scales. The question, however, is whether they license the right kind of expec-
tation: that the values of parameters in the low energy theory (and thus any
observables that are functions of those parameters) will be insensitive to the
values of parameters at the cutoff scale Λ. Put another way, the question is
whether, and in what sense, Giudice’s claim that “[naturalness] is the con-
sequence of a reasonable criterion that assumes the lack of special conspira-
cies between phenomena occurring at very different length scales. It is deeply
rooted in our description of the physical world in terms of effective theories”
[37, p. 3] can be justified by renormalization group methods and the decoupling
theorem.

The short answer is that requiring that a quantum field theory be natural
demands a more stringent autonomy of scales than we are strictly licensed
to expect by these structural features of effective field theory. Nothing in the
structure of effective field theory just described places any restrictions on how
sensitive observables calculated in a low-energy effective field theory, obtained
by integrating out high-energy degrees of freedom, can be to the values of
parameters in the original effective field theory defined up to the cutoff scale Λ.
This is why Dawson’s statement about the decoupling theorem was not correct;
the decoupling theorem does not place any constraints on the magnitude of
the corrections that couplings in the low-energy effective theory can receive.21

Renormalization group methods and the decoupling theorem tell us only that
the effects of the heavy degrees of freedom that have been integrated out
can be incorporated into the couplings in the low-energy effective theory; it
offers no assurances that one won’t have to arrange for “conspiracies” between
parameters at the cutoff scale Λ to ensure that observables in the low-energy
effective theory can be calculated accurately. Strictly speaking, the sense of
the autonomy of scales that is underwritten by the structure of effective field
theories is independent of the stricter notion demanded by naturalness.

One can read this observation as a first caveat to the idea that natural-
ness, understood as a principle about the autonomy of scales, is well-motivated
within effective field theory. Naturalness in this sense is motivated insofar as

21 In [20, chapter 8], for example, a pedagogical proof of the decoupling theorem is given
using a scalar field theory in which the couplings in the low-energy effective theory are
quadratically sensitive to the high-energy physics that is integrated out.



18 Porter Williams

structural features of effective field theory lead us to expect a general insensi-
tivity of low-energy observables to the structure of the theory at much higher
energies, but it goes beyond what is strictly licensed by those structural fea-
tures. As I said above, unnatural theories seem to violate the spirit, though
not the letter, of the relationship between scales in effective field theory.

There is a second caveat to this way of understanding naturalness. It is
not a precise criterion, but rather a rough physical heuristic. How sensitive
can a low-energy observable be to the values of couplings in the high-energy
theory before it counts as problematic? How many orders of magnitude have to
separate the scales EL and Λ before matching of O(EL

Λ ) between parameters
at the scale Λ becomes unnatural? How large or small can a dimensionless
parameter be before it is not considered of O(1)?22 I will turn attention to
formal measures of naturalness momentarily, and the imprecision here may
initially seem like a drawback when compared to the apparent precision of
the quantitative measures of naturalness one finds in the physics literature.
However, it has proven very difficult to construct any particular quantitative
measure of naturalness that earns widespread approval within the particle
physics community. It is a virtue of understanding naturalness as a rough
physical heuristic about the autonomy of scales that it offers an explanation
for the difficulty of building a satisfactory quantitative measure of naturalness.
The endeavor seeks to impose unwarranted precision on a essentially imprecise
concept, running afoul of an old Aristotelian dictum: “it is the mark of an
educated man to look for precision in each class of things just so far as the
nature of the subject admits.”

3 Naturalness quantified

In order for naturalness to serve as a guide to constructing models of BSM
physics and extracting predictions from them – the use to which the principle
was put already by Susskind [58] and ’t Hooft [60] – a desire to formulate
a more quantitative statement of the principle is understandable.23 The first,
and most influential, quantitative measure of naturalness was given by Barbieri
and Giudice [12]. They explicitly aimed to quantify a notion of naturalness
according to which a parameter’s unnaturalness is captured by the degree to
which it violates an autonomy of scales expectation: “let us finally spend a
word on the significance of the ‘naturalness’ criterion that we are employing.
The problem of the quadratic divergences of the Higgs squared mass is a
serious one. There is no known example of cancellation between a quadratic
divergence in the low energy theory and contributions from shorter distances”
[p. 73]. To quantify this notion, they introduce a parameter ∆i (BG) capturing

22 Recall Zee’s somewhat relaxed attitude on this score; see also [68, p. 103] for a similarly
relaxed attitude.
23 The reader is encouraged to see Grinbaum [41, section 3] for a complementary discussion

of the evolution of quantitative measures of naturalness and how the concept of naturalness
itself underwent modifications through this process.
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the sensitivity of a low-energy observable M(αi) to infinitesimal variations in
parameters αi defined at higher energies:24

∆i (BG) =

∣∣∣∣ αi
M(αi)

∂M(αi)

∂αi

∣∣∣∣
Barbieri and Giudice then impose the requirement that a theory be considered
natural if and only if ∆BG ≡ max

{
∆i (BG)

}
< 10, and use this to extract upper

bounds for the masses of particles in the Minimal Supersymmetric Standard
Model (MSSM).

Since [12], there have been a number of proposals to revise this measure, the
allowed value of ∆, or both.25 My claim is that as these quantitative measures
of naturalness developed, a new notion of naturalness developed too. According
to this alternative notion, naturalness is a statistical property: a parameter (or
model) is natural if and only if it is “likely” or “probable” according to some
measure defined over some space of parameters (or models).

This alternative notion was not introduced fully in a single paper, but de-
veloped gradually. The earliest outlines of this alternative notion begin taking
shape in the early 1990s, beginning with de Carlos and Casas [23]. In that
paper, de Carlos and Casas note that ∆BG does not capture only the local
sensitivity of an observableM(αi) to infinitesimal variations of αi; it also cap-
tures any global sensitivity in the functional dependence ofM on any αi. For
example, if M were the mapping M : α 7→ αn with n� 1, then the Barbieri
and Giudice measure yields an unacceptably large value of ∆BG independent
of the value αi.

This global sensitivity of the Barbieri and Giudice measure was also rec-
ognized by Anderson and Castaño [3]. They thought that a good measure
of naturalness should declare a model unnatural only if the model required
fine-tuning, and the fact that global sensitivity is not a reliable indicator of
fine-tuning led them to conclude that the Barbieri and Giudice measure was
inadequate as a measure of naturalness. This, in turn, motivated them to in-
troduce an explicitly statistical notion of naturalness, which they took to more
reliably indicate the degree of fine-tuning required in a model. They propose
as a measure of naturalness

∆i (AC) =
∆i (BG)

∆i (BG)

This is the Barbieri and Giudice measure rescaled by an “average” fine-tuning
∆i (BG) over some range of the parameter(s) αi. In principle, this need not
signal any break with the “autonomy of scales” understanding of naturalness
that I outlined above: one might reasonably think that a global sensitivity of a

24 In the original example, the low-energy observable is MZ , standing in for the scale
of EWSB, and they consider variations of parameters αi related to the scale at which
supersymmetry is broken in a given model. The prefactor αi

M is included to remove an
overall dependence on the scale of αi and M.
25 See, for example, [23,3,4,2,19,8].
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model’s low-energy observables to high-energy parameters is not terribly infor-
mative, while a model whose low-energy observables exhibit different relative
local sensitivities at distinct points αj and αk of parameter space might be
telling us something interesting about the model at those two points.

In practice, however, Anderson and Castaño do initiate a break from this
understanding of naturalness in constructing their refined measure. In partic-
ular, they are the first to explicitly link naturalness to the statistical likelihood
of specific values of high-energy parameters. They state that “we wish to sys-
tematically clarify what measures of fine tuning best quantify our intuitive
notion of naturalness and how these measures should be normalized. . . Any
measure of fine tuning that quantifies naturalness can be translated into an
assumption about how likely a given set of Lagrangian parameters is” [3, p.
302].

To accomplish this, they must first assume a probability distribution f(αi)
over the fundamental parameters αi; as they recognize, the choice of any par-
ticular f(αi) “necessarily introduces an element of arbitrariness into the con-
struction” [p. 302].26 In particular, they note that “our choice of f(αi) reflects
our theoretical prejudice about what constitutes a natural value of the La-
grangian parameter αi” [p. 302]. Once one has selected a distribution f(αi),
however, one can translate this into a probability distribution over observables
X (e.g. MZ): “In studies of naturalness, we may ask: If the fundamental La-
grangian parameters at our high energy boundary condition are distributed
like f(αi), how likely is a low energy observable, X(αi), to be contained in an
interval u(X)dX about X?” [p. 302]. Given that the experimental values of ob-
servables like MZ are known, one can then adopt the “interval” u(X) = X; if
a set of fundamental parameters distributed according to a distribution f(αi)
make it unlikely that X(αi) = X, one concludes that either (i) one’s selection
of a “natural” distribution of fundamental parameters f(αi) must be revised
or (ii) the model is unnatural.

It is important for Anderson and Castaño that one be able to distinguish
between sensitivity and naturalness. In particular, they treat naturalness as
closely related to, but distinct from, the sensitivity of certain low-energy ob-
servables to infinitesimal variations in the high-energy parameters. They draw
this distinction in their conclusion:

We have analyzed the prescription popularly used to measure fine tun-
ing. This prescription is an operational implementation of Susskind’s
statement of Wilson’s sense of naturalness, ‘Observable properties of a
system should be stable against minute variations of the fundamental
parameters.’ Because this prescription is only a measure of sensitiv-
ity, we found that it is not a reliable measure of naturalness. We then
constructed a family of prescriptions which measure fine tuning more

26 A number of such choices have to be made in any attempt to construct a quantitative
measure of naturalness, as is discussed in some detail in [34] and [21]. As I said above, I
think there is a plausible argument to be made that this inevitable sense that one is making
arbitrary choices stems from trying to impose unwarranted mathematical precision on an
imprecise physical heuristic.
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reliably. Our measure is an operational implementation of a modified
version of Wilson’s naturalness criterion: Observable properties of a
system should not be unusually unstable against minute variations of
the fundamental parameters” [3, p. 307, emphasis added].

Anderson and Castaño thus present themselves as breaking with the “auton-
omy of scales” understanding of naturalness and presenting a distinct, statis-
tical notion of naturalness.27

As a linguistic matter, the probabilistic notion of naturalness proposed by
Anderson and Castaño is a minor modification of the autonomy of scales no-
tion: they conclude that a natural model is one in which observables are not
unusually sensitive to the values of fundamental parameters. As a conceptual
matter, however, Anderson and Castaño’s desire to construct a notion of nat-
uralness that translated into an assumption about a probability distribution
over fundamental parameters resulted in an early and important step toward
the development of a statistical notion of naturalness.

As I said above, this development occurred gradually. As summarized by
Grinbaum [41, section 3], it became increasingly popular to interpret measures
of naturalness as providing information about probability distributions on pa-
rameter space. For instance, several years after [3], one finds Ciafaloni and
Strumia treating measures of naturalness as a source of probabilistic infor-
mation about parameter space [19], while Giusti, Romanino, and Strumia [40]
speak similarly of the “naturalness probability” of certain regions of parameter
space. By the time Athron and Miller propose to “construct a tuning measure
which determines how rare or atypical certain physical scenarios are” [8, p. 3]
they are building on over a decade of similar interpretations of naturalness.

In subsequent years this statistical notion of naturalness has become widespread,
leading to a bifurcation of naturalness into two notions which are closely re-
lated, both historically and conceptually, but essentially distinct: one notion of
naturalness according to which naturalness problems are failures of an expec-
tation about the autonomy of scales, and a second notion according to which
naturalness problems stem from a parameter (or theory) being “unlikely” or
“improbable”. A similar distinction has been recognized by Wells [67], who
distinguishes “Principled Finetuning” from “Chance Finetuning” and suggests
that these two distinct notions call for different types of solutions.

As I discussed in the Introduction of this paper, none of the BSM physics
predicted by natural extensions of the Standard Model has been detected at
the LHC and this has led to a rough trifurcation of attitudes about the status
of naturalness in particle physics. On the one hand, many have concluded that
since “no new physics has been so far seen at LHC with

√
s = 8 TeV. . . while

this is not conclusive evidence. . . it is fair to say that the most straightforward

27 Anderson recalls that their understanding of naturalness at the time was that “if you
imagine that the fundamental (Lagrangian) parameters had some smooth probability distri-
bution, an observable parameter would be unnatural if the measured value of that parameter
was only within some characteristic range around the measured value for an unusually small
part of the parameter space relative to other values” (personal communication). This has
no essential connection to a notion of interscale sensitivity.
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interpretation of present data is that the naturalness ideology is wrong” [33].
This, I think, is a quite reasonable statement insofar as one understands nat-
uralness as a notion related to the autonomy of scales. On the other hand,
one finds increasingly frequent remarks that the best hope for saving the nat-
uralness ideology comes from embedding problems of naturalness into a new
physical setting: that of a vast landscape of effective field theories. This pro-
posal hinges on entirely divorcing naturalness from the effective field theory
context and its attendant autonomy of scales-based justification and re-casting
it as a conceptually independent, purely statistical notion. The result, I claim,
is a notion employed in this new physical setting that is “naturalness” in name
only.

4 Naturalness in the multiverse

It is increasingly common in high-energy physics – particle physics, quantum
gravity, and early universe cosmology – to encounter the idea that our universe
may be an isolated point in a much larger multitude of causally disconnected
universes: a multiverse. Most commonly, the picture is that of a large number
of effective field theory vacua that arise from different compactifications of
extra dimensions in string theory models, with these vacua populated by some
mechanism for eternal cosmic inflation.28 The result is a large space of low-
energy effective field theories – the string landscape – across which low-energy
physics such as symmetries, parameter values, and particle content can vary.

One also often finds it suggested that the notion of naturalness developed
in the context of effective field theory in a single universe can be conserva-
tively embedded into a multiverse setting. This trend is noted by Giudice,
who remarks that

There is already ongoing activity on how the concept of naturalness
could be reshaped in post-natural times. . . I will only comment on a
single new trend: the idea that the explanation of Higgs naturalness
may not lie behind some still undiscovered symmetry, but within the
cosmological evolution of the universe. The most daring approach of
this kind is based on a multiverse populated by eternal inflation, in
conjunction with the idea that fundamental parameters. . . [may be] dy-
namical variables that take different values in a landscape of vacuum
states [38, p. 8].

It is not hard to substantiate Giudice’s claim that this is a trend. Consider a
representative sample of quotations:

– Dine, Gorbatov, and Thomas: “[We] stress that within the landscape, con-
ventional notions of naturalness are sharpened, not abrogated” [27].

28 For pedagogical discussion of the details of compactification mechanisms and the origin
of the landscape, see [46] or [24].
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– Silverstein: “I find the statistical program for seeking generic properties of
string vacua extremely interesting, particularly in its prospects for refining
our notions of naturalness” [57].

– Carroll: “the possible epistemological role of the multiverse is to explain
why our observed parameters are natural” [16].

– Douglas: “Moduli stabilization also determines the distribution of vacua...and
thus the distribution of couplings and masses in the low energy effective the-
ory. One can make detailed statistical analyses of this distribution, which
incorporate and improve the traditional discussion of naturalness of cou-
plings” [31].

The notion of naturalness upon which all of these authors draw is the statistical
one whose development was sketched above. Michael Douglas has re-cast this
statistical notion in the setting of the string landscape as a principle of stringy
naturalness:

An effective field theory (or specific coupling, or observable) T1 is more
natural in string theory than T2, if the number of phenomenologically
acceptable vacua leading to T1 is larger than the number leading to T2
[30,32,31].

Though not everyone arguing that a multiverse may offer solutions to natural-
ness problems uses Douglas’s exact definition, the statistical notions employed
are sufficiently similar that I will treat “stringy naturalness” as a catch-all
term for the notion(s) of statistical naturalness employed in the multiverse.

In a multiverse setting, then, naturalness problems are transformed from
problems concerning the autonomy of scales to problems concerning the count-
ing of vacua with phenomenologically acceptable values of the mass of the
Higgs boson and/or the cosmological constant. There are several properties
of the string landscape that might immediately give one pause.29 In order to
count phenomenologically acceptable string vacua, one needs both a measure
for counting and a clearly specified space of phenomenologically acceptable
string vacua; in a string landscape with the vacua populated by some mecha-
nism for eternal inflation, one has neither. The lack of a non-arbitrary measure
is well-known, and stems from the need for eternal inflation: as Guth [42] points
out, “In an eternally inflating universe, anything that can happen will happen;
in fact, it will happen an infinite number of times.”30 This makes clear the
problem with imagining that one can simply count vacua and then compare
relative frequencies: one cannot define the relative frequency of vacua with
property A to vacua with property B if both numbers are infinite. As [42]
points out, one can introduce a regularization method to get a meaningful
ratio, but doing so produces results that depend sensitively on apparently ar-
bitrary choices about the regularization; for example, if one orders the natural
numbers N as {1, 3, 2, 5, 7, 4, . . .} and takes N →∞ one gets that the relative

29 My thanks to a referee for urging me to address this.
30 See also [55] for a discussion of this problem that is more directly focused on the string

landscape.
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frequency of odd numbers in N is two-thirds, while choosing {1, 2, 3, 4, 5, . . .}
yields a relative frequency of odd numbers in N of one-half.

I will argue below that by re-casting in the string landscape the statistical
notion of naturalness born in BSM physics, one loses the effective field theory
structure that made it seem troubling that the measured value of the Higgs
mass was highly sensitive to variations of the high-energy parameters; that
is, one loses the motivation for viewing naturalness problems as “problems”
at at all. The measure problem entails that the situation is even worse than
that: one also loses any mathematically well-defined, non-arbitrary notion of
probability that was associated with the statistical notion of naturalness in
the BSM setting. Even if, in the BSM context, one preferred the statistical
conception of naturalness to the autonomy of scale notion, the mathematically
well-defined notion of probability attendant to that statistical conception that
contributed to its appeal in the BSM context does not carry over to the string
landscape.

In fact, for all of the trouble one faces in defining a measure on the string
landscape, there is an even more fundamental question that is unanswered:
what, precisely, is the space on which one seeks to define a measure? Specifi-
cally, it is unclear how much volume of the space of all apparently consistent
low-energy effective field theories is occupied by effective field theories that
can arise from string theory. If the answer is that any consistent low-energy
effective field theory can be produced by some string compactification, then
the space on which one is attempting to define a measure is the space of all
low-energy effective field theories. This attitude is not uncommon: as Bren-
nan, Carta, and Vafa [15, p. 20] state, “there has been a distinct philosophical
shift in the community over the past decade. . .Instead of starting with fully-
fledged string theory and studying the compactifications down to 4D, many
have started studying effective four dimensional quantum field theories. . .The
common lore is that because the string landscape is so large, it is likely that any
consistent looking lower dimensional effective field theory coupled to gravity
can arise in some way from a string theory compactification.”

Contrary to this common lore, it has recently been conjectured that re-
quiring that a low-energy effective field theory be UV-completable into string
theory places strong constraints on the properties that the effective field theory
can have. According to this conjecture, most apparently consistent low-energy
effective field theories cannot arise from string compactifications, with the re-
sult that the string landscape occupies a very small volume in the space of
all low-energy effective field theories [61,51,15].31 Those effective field theories
that cannot be UV-completed into string theory constitute the “swampland”
and the conjecture that the landscape occupies a very small volume in the
enormous space of all low-energy effective field theories is the “swampland
conjecture.” The truth or falsity of the swampland conjecture is relevant to
any attempt to employ a statistical notion of naturalness on the string land-

31 See also [1] for an early investigation of the properties an effective field theory should
satisfy if it is to have a UV completion.



Two Notions of Naturalness 25

scape; insofar as one does not know which low-energy effective field theories
can arise from string theory, one does not even have a clear specification of
the space on which they hope to define a measure.

Whether the swampland conjecture is true or not, the space on which one
is trying to define a naturalness measure is one in which not merely the pa-
rameter values, but also the symmetries, particle content, and so on can vary
at different points in the space. This is starkly different from the situation in
BSM applications of naturalness where one selects a single model, with fixed
particle content and symmetry group, and evaluates the sensitivity of its ob-
servables to variations around different points in a clearly specified parameter
space. I take these considerations to indicate that even if a statistical notion
of naturalness could be well-defined in the string landscape, it would have
little conceptual relationship to even the statistical notion of naturalness that
is employed in the context of BSM physics, and would play a quite distinct
methodological role from that it plays in BSM physics.

All of that said, advocates of re-casting naturalness in a multiverse often
prefer to proceed as if the only feature of the multiverse that is relevant is that
it is a large space of low-energy effective field theories across which the values of
parameters, like the mass of an elementary scalar particle or the cosmological
constant, can vary. Even setting aside the above concerns and proceeding with
the discussion on these terms, it quickly becomes clear that the conception of
naturalness being employed in these discussions has essentially nothing to do
with the notion that was well-motivated within the structure of effective field
theory; the result is that in a multiverse, one loses the traditional justification
for viewing naturalness problems as “problems” at at all.

One preliminary indication of this is that just the numerical value of the
Higgs boson mass was never the compelling problem for BSM physics; rather,
that the value seemed puzzling was a symptom of its sensitivity to the details
of the Standard Model’s structure at high energies. According to those who
developed the notion of naturalness – Wilson, Susskind, ’t Hooft, Barbieri and
Giudice, and others – it was this sensitivity that was unnatural in the context
of effective field theory. In that sense, the counting problems that stringy
naturalness picks out as requiring solutions have no relationship to the notion
of naturalness that is motivated within effective field theory and the problems
it identifies.

It is true that stringy naturalness bears some conceptual relationship to
the statistical notion of naturalness whose development was sketched above.
As was argued above, that statistical notion itself has tenuous connection to
the original conception of naturalness as an autonomy of scales requirement,
but it is certainly true that the statistical conception of naturalness retains at
least some connection to the autonomy of scales notion within the context of
effective field theory. If for no other reason, this is ensured by the fact that the
quantitative measures constructed by Anderson and Castaño or Athron and
Miller, for instance, are variations on the Barbieri and Giudice measure, which
was explicitly constructed to track the sensitivity of low-energy observables to
variations of high-energy parameters. Insofar as one is supposed to measure



26 Porter Williams

stringy naturalness by something like a straightforward counting of vacua,
it does not enjoy even this formal relationship to the Barbieri and Giudice
measure. Whatever conceptual relation there is between the autonomy of scales
notion of naturalness and the statistical notion of naturalness in the BSM
context, it is entirely severed when the latter is re-cast as “stringy naturalness”
in a multiverse context.

There is a specific wedge issue that is helpful for seeing the way in which
the autonomy of scales notion of naturalness and stringy naturalness come
apart: whether low-energy supersymmetry should be considered natural. Low-
energy supersymmetry is, of course, paradigmatically natural according to
the autonomy of scales conception of naturalness; its ability to provide an
extension of the Standard Model that naturally explained the stability the
EWSB has long been one of the most popular theoretical arguments in its
favor. By contrast, and somewhat remarkably, low-energy supersymmetry may
count as unnatural according to stringy naturalness!

It has long been unclear whether a low-energy scale of supersymmetry
breaking is statistically favored among the effective field theories in the land-
scape. Attempts to analyze the statistical distribution of low-energy effective
field theories in the landscape have led to conflicting results; see [29,25,59,
32,27,31] and many references therein. This, combined with the definition of
stringy naturalness as “statistically favored in a multiverse” is what allows
Douglas [31] to claim that an argument “from stringy naturalness” suggests
that string theory prefers a supersymmetry breaking scale of 30 − 100 TeV.
That those who employ stringy naturalness are not working with the same
notion of naturalness as Wilson, Susskind, ’t Hooft, or Barbieri and Giudice
is clear from the fact that this is a supersymmetry-breaking scale several or-
ders of magnitude too high for the MSSM and other simple supersymmetric
extensions of the Standard Model to be natural, according to the autonomy
of scales notion of naturalness.

I certainly do not claim to have any particular insight into whether low-
scale supersymmetry breaking is, in fact, statistically favored in the string
landscape, but such insight is unnecessary for my present aim.32 I want only
to show how thoroughly divorced the notion of stringy naturalness employed
in a multiverse setting is from the autonomy of scales notion of naturalness
developed in the context of effective field theory. All that is needed to achieve
that goal is the fact that it is widely considered an open question whether
low-energy supersymmetry is stringy natural in a multiverse setting, while low-
energy supersymmetry is the paradigmatically natural scenario in a effective
field theory context. The fact that an effective field theory with low-energy
supersymmetry breaking can be considered natural according to the autonomy
of scales notion of naturalness while that very same model, if embedded in a

32 For what it is worth, the attitude expressed by [6] seems to me quite reasonable: “One
might think that low-energy SUSY with mS ∼ TeV is preferred, since this does not entail a
large fine-tuning to keep the Higgs light. However, this conclusion is unwarranted. . . without
a much better understanding of the structure of the landscape, we can’t decide whether low-
energy SUSY breaking is preferred to SUSY broken at much higher energies.”
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multiverse, could simultaneously be deemed stringy-unnatural because there
are insufficiently many other vacua with low-energy supersymmetry breaking,
demonstrates clearly that there are two independent notions of naturalness in
play.

5 Conclusion

I want to conclude with two further remarks. The first is an additional com-
ment on the way in which the two notions of naturalness come apart. On the
one hand, whether an effective field theory is natural is a “local” property ac-
cording to the autonomy of scales conception of naturalness: it is determined
entirely by the sensitivity of a theory’s low-energy observables to variations
of fundamental parameters within a small neighborhood of a selected point in
parameter space. In the Barbieri and Giudice measure, for instance, this small
neighborhood is infinitesimal: one simply takes derivatives of the selected low-
energy observables with respect to the selected high-energy parameters. It is a
notion that tracks the stability of the theory’s low-energy observables against
these minute variations around selected points in parameter space. On the
other hand, stringy naturalness is a thoroughly “global” notion: in order to
determine whether a coupling, observable, or effective field theory is stringy
natural, one must examine the entirety of the string landscape of low-energy
effective field theories. It is thus unsurprising that the two notions can render
conflicting verdicts on any given model: they are tracking independent prop-
erties, and are determined by investigating very different volumes of two very
different spaces.

One may object to this diagnosis on the grounds that while the value
that the Barbieri and Giudice measure assigns to ∆i (BG) depends only on
an infinitesimal neighborhood around a point αi in parameter space, this is
not true even for other, non-stringy measures of naturalness.33 For example,
the Anderson and Castaño measure relies on information about the degree of
global sensitivity of an observable X to all parameter values αj over some
chosen non-infinitesimal range of parameter space. They then incorporate this
non-local information into their proposed measure of naturalness, which is es-
sentially ∆i (BG) rescaled to eliminate the global sensitivity. The later measure
proposed by Athron and Miller [8] is also non-local, roughly defined as the
ratio between the volume in parameter space capable of reproducing the mea-
sured values of a model’s low energy observables and the “typical” volume in
parameter space that one would expect to reproduce those observables in that
model.

My response to this concern is as follows. The distinction I have aimed
to draw is between an “autonomy of scales” conception of naturalness and a
statistical notion of naturalness. I have argued that the definitions offered by
Wilson, Susskind, and ’t Hooft, and the quantitative measure introduced by

33 My thanks to a referee for offering this objection.
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Barbieri and Giudice, are best understood as motivated by the “autonomy of
scales” conception, and that the measures proposed by Anderson and Castaño,
Athron and Miller, and advocates of stringy naturalness all, to different de-
grees, break from the “autonomy of scales” conception. The fact that these
latter measures of naturalness are to some degree non-local can be seen as a
symptom of the fact that they are quantifying a conception of “naturalness”
that is distinct from the “autonomy of scales” conception.

In particular, Athron and Miller state explicitly that they are breaking
from the autonomy of scales conception and aim to construct a measure of
statistical typicality: “fine tuning may also be characterized by instability. It
is this instability which the traditional measure is exploiting. Instead we wish
to construct a tuning measure which determines how rare or atypical certain
physical scenarios are” [8, p. 3]. The fact that the resulting measure is non-
local should not be taken as evidence that the autonomy of scales conception
of naturalness is itself non-local.

Although Anderson and Castaño also explicitly break with the autonomy
of scales conception of naturalness, the close connection of the measure they
propose with the Barbieri and Giudice measure makes its analysis less straight-
forward. I think a plausible, albeit strict, reading of the autonomy of scales
conception of naturalness does entail that global sensitivity is an informative a
property of a model. This would still allow naturalness to be used in practice,
just as it is now, when evaluating different models at points in some jointly
allowed region of parameter space: for instance, if a set of observables in the
Standard Model are more sensitive than are those same observables in the
MSSM to variations around every point αj in some allowed region of parame-
ter space, one might think that this global sensitivity should be factored into
our judgment about whether the MSSM is more natural than the SM, even at
a specific point in parameter space αk.

Adherence to this strict reading of the autonomy of scales conception
would, however, affect how one uses naturalness measures when comparing
the same model at different points. The naturalness value of ∆i (BG)(αi) or
∆j (BG)(αj) would not be intrinsically informative, but only provide us with
information about the relative naturalness of the model at different points,
i.e. only ∆i (BG)(αi) − ∆j (BG)(αj) would be meaningful. On this reading of
the autonomy of scales conception of naturalness, one maintains a local mea-
sure of naturalness at the expense of accepting that it is only comparatively
meaningful. The belief that measures of naturalness have, at best, comparative
meaning but no intrinsic meaning is not unique; for example, after a review
of some of the apparently arbitrary decisions that one has to make when con-
structing a quantitative measure of naturalness, Craig [21, p. 7] concludes that
“it is clear that measures of tuning have no intrinsic meaning. They may have
some comparative value in terms of contrasting models, but even this is not
absolute.” By contrast, Anderson and Castaño aim to construct a measure of
naturalness that is intrinsically meaningful, but at the expense of making the
notion explicitly non-local.
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I argued above that Anderson and Castaño initiate a break with the au-
tonomy of scales conception of naturalness, but this is due to their tying nat-
uralness to a probability distribution over fundamental parameters, not by
introducing a non-local rescaling of what is essentially the Barbieri and Giu-
dice measure. In this particular case, choosing between a local, comparatively
meaningful measure or a non-local, intrinsically meaningful measure of natu-
ralness strikes me as akin to choice of convention with little conceptual signif-
icance. I hasten to add that this is not the case for the stringy naturalness; in
that case, there is no alternative, local way to construe the “global” notion of
stringy naturalness employed in the landscape.

My second remark concerns the purported ability of the multiverse to solve
naturalness problems; specifically, the manner in which this purported abil-
ity has been presented as supporting evidence for the existence of a multi-
verse, and thus as supporting evidence for theories that evidently give rise
to a multiverse. Hall and Nomura, for example, claim that “evidence for the
multiverse can be found in three different arenas: the cosmological constant,
nuclear physics, and electroweak symmetry breaking. In all three cases, the
conventional approach. . . leads to naturalness problems. . . In each arena the
multiverse easily and generically solves the naturalness problem” [43, p. 39],
a claim which they base on a statistical notion of naturalness much like the
stringy notion discussed above. In a similar, though more restrained, spirit,
Douglas [30] writes “We only live in one vacuum. However. . . vacuum multi-
plicity can help in solving the cosmological constant problem. . . In the absence
of other candidate solutions to the problem, we might even turn this around
and call these ideas evidence for the hypothesis that we are in a compactifica-
tion with many hidden sectors.”

Problems of naturalness have driven much of BSM physics since the late
1970s and it would certainly count as an accomplishment of a multiverse theory
if it were able to solve those problems. However, as we have seen, the claim that
a multiverse can solve the naturalness problem(s) in the Standard Model trades
on a notion of “naturalness problem” that has fundamentally no conceptual
overlap with the naturalness problem(s) that 40 years of BSM theorizing have
aimed to solve. Those who present as evidence for a multiverse the claim that
it can solve the naturalness problem(s) of the Standard Model are equivocating
between two essentially different notions of naturalness. Thus, while statistical
analyses of the string landscape are certainly of great interest, and it would be
an important discovery to determine that string theory predicts that “most”
low-energy effective field theories in a multiverse contain an elementary Higgs
boson with a mass of 125 GeV or a very small cosmological constant, it is
misleading to present this as offering a natural solution to these problems:
such a statistical analysis could not and does not provide a solution to the
naturalness problem(s) that particle physics has aimed at solving since the
1970s.
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46. Ibáñez, L.E. and Uranga, A.M., String theory and particle physics: An introduc-
tion to string phenomenology, Cambridge University Press, Cambridge (2012)

47. Kummer, W. and Segre, G., A model of weak interactions mediated by scalar
bosons, Nuclear Physics, 64, 585-592 (1965)

48. Landsman, N.P., Large-mass and high-temperature behaviour in perturbative
quantum field theory, Communications in mathematical physics, 125, 643-660
(1989)

49. Manoukian, E.B., Renormalization, Academic Press, (1983)
50. Murayama, H., Supersymmetry Phenomenology, http://arxiv.org/abs/hep-

ph/0002232, (2000)
51. Ooguri, H. and Vafa, C., On the geometry of the string landscape and the

swampland, Nuclear Physics B, 766, 21-33 (2007)



32 Porter Williams

52. Peskin, M. E. and Schroeder, D. V., An introduction to quantum field theory,
Westview Press (1995)

53. Richter, B., Theory in particle physics: theological speculation versus practical
knowledge, Physics Today, 59, 8-9 (2006)

54. Rosaler, J. and Harlander, R., Naturalness, Wilsonian Renormalization, and
“Fundamental Parameters” in Quantum Field Theory, manuscript (2018)

55. Schellekens, A. N., Life at the interface of particle physics and string theory,
Reviews of Modern Physics, 85, 1491 (2013)

56. Schweber, S.S., QED and the men who made it: Dyson, Feynman, Schwinger,
and Tomonaga, Princeton University Press, Princeton (1994)

57. Silverstein, E., Counter-intuition and scalar masses, http://arxiv.org/abs/hep-
th/0407202 (2004)

58. Susskind, L., Dynamics of spontaneous symmetry breaking in the Weinberg-
Salam theory, Phys. Rev. D, 20, 2619-25 (1979)

59. Susskind, L., Supersymmetry breaking in the anthropic landscape. In: From
Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial
Collection, Shifman, M., Vainshtein, A., and Wheater, J. (eds), 1745-49, World
Scientific (2005)

60. ’t Hooft, G., Naturalness, chiral symmetry, and spontaneous chiral symmetry
breaking. In: Recent developments in gauge theories, ’t Hooft, G., Jaffe, A.,
Itzykson, C., Lehmann, H., Mitter, P.K., Singer, I., and Stora, R. (eds), 135-
157, Springer, Boston (1980)

61. Vafa, C., The string landscape and the swampland, arXiv preprint hep-
th/0509212 (2005)

62. Terning, J., Modern supersymmetry: Dynamics and duality, Oxford University
Press, Oxford (2006)

63. Veltman, M., The infrared-ultraviolet connection, Acta Physica Polona, B12,
437 (1981)

64. Weinberg, S., Living in the Multiverse. In: Universe or Multiverse?, Carr, B.
(ed), 29-42, Cambridge University Press, Cambridge (2007)

65. Weisskopf, V.F., On the self-energy and the electromagnetic field of the electron,
Physical Review, 56, 72 (1939)

66. Wells, J.D., Implications of Supersymmetry Breaking with a Little Hierarchy
between Gauginos and Scalars, https://arxiv.org/abs/hep-ph/0306127 (2003)

67. Wells, J.D., PeV-scale supersymmetry, Phys. Rev. D, 71, 015013 (2005)
68. Wells, J.D., The utility of Naturalness, and how its application to Quantum

Electrodynamics envisages the Standard Model and Higgs boson, Studies in
History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, 49, 102-108 (2015)

69. Williams, P., Naturalness, the Autonomy of Scales, and the 125 GeV Higgs,
Studies in History and Philosophy of Science Part B: Studies in History and
Philosophy of Modern Physics, 51, 82-96 (2015)

70. Wilson, K.G., Renormalization Group and Strong Interactions, Phys. Rev. D,
3, 1818-46 (1971)

71. Wilson, K.G., The origins of lattice gauge theory, Nuclear Physics B–
Proceedings Supplements, 140, 3-19 (2005)

72. Zee, A., Quantum Field Theory in a Nutshell, Princeton University Press,
Princeton (2010)


	Introduction
	Naturalness and the autonomy of scales
	Naturalness quantified
	Naturalness in the multiverse
	Conclusion

