760 research outputs found

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×1071.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres

    The Origin of OB Runaway Stars

    Full text link
    About 20% of all massive stars in the Milky Way have unusually high velocities, the origin of which has puzzled astronomers for half a century. We argue that these velocities originate from strong gravitational interactions between single stars and binaries in the centers of star clusters. The ejecting binary forms naturally during the collapse of a young (\aplt 1\,Myr) star cluster. This model replicates the key characteristics of OB runaways in our galaxy and it explains the \apgt 100\,\Msun\, runaway stars around young star clusters, e.g. R136 and Westerlund~2. The high proportion and the distributions in mass and velocity of runaways in the Milky Way is reproduced if the majority of massive stars are born in dense and relatively low-mass (5000-10000 \Msun) clusters.Comment: to appear in Scienc

    A runaway collision in a young star cluster as the origin of the brightest supernova

    Full text link
    Supernova 2006gy in the galaxy NGC 1260 is the most luminous one recorded \cite{2006CBET..644....1Q, 2006CBET..647....1H, 2006CBET..648....1P, 2006CBET..695....1F}. Its progenitor might have been a very massive (>100>100 \msun) star \cite{2006astro.ph.12617S}, but that is incompatible with hydrogen in the spectrum of the supernova, because stars >40>40 \msun are believed to have shed their hydrogen envelopes several hundred thousand years before the explosion \cite{2005A&A...429..581M}. Alternatively, the progenitor might have arisen from the merger of two massive stars \cite{2007ApJ...659L..13O}. Here we show that the collision frequency of massive stars in a dense and young cluster (of the kind to be expected near the center of a galaxy) is sufficient to provide a reasonable chance that SN 2006gy resulted from such a bombardment. If this is the correct explanation, then we predict that when the supernova fades (in a year or so) a dense cluster of massive stars becomes visible at the site of the explosion

    Comparing compact binary parameter distributions I: Methods

    Full text link
    Being able to measure each merger's sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference

    Face-on accretion onto a protoplanetary disc

    Get PDF
    Globular clusters (GCs) are known to harbor multiple stellar populations. To explain these observations Bastian et al. suggested a scenario in which a second population is formed by the accretion of enriched material onto the low-mass stars in the initial GC population. The idea is that the low-mass, pre-main sequence stars sweep up gas expelled by the massive stars of the same generation into their protoplanetary disc as they move through the GC core. We perform simulations with 2 different smoothed particle hydrodynamics codes to investigate if a low-mass star surrounded by a protoplanetary disc can accrete the amount of enriched material required in this scenario. We focus on the gas loading rate onto the disc and star as well as on the lifetime of the disc. We find that the gas loading rate is a factor of 2 smaller than the geometric rate, because the effective cross section of the disc is smaller than its surface area. The loading rate is consistent for both codes, irrespective of resolution. The disc gains mass in the high resolution runs, but loses angular momentum on a time scale of 10^4 yrs. Two effects determine the loss of (specific) angular momentum in our simulations: 1) continuous ram pressure stripping and 2) accretion of material with no azimuthal angular momentum. Our study and previous work suggest that the former, dominant process is mainly caused by numerical rather than physical effects, while the latter is not. The latter process causes the disc to become more compact, increasing the surface density profile at smaller radii. The disc size is determined in the first place by the ram pressure when the flow first hits the disc. Further evolution is governed by the decrease in the specific angular momentum of the disc. We conclude that the size and lifetime of the disc are probably not sufficient to accrete the amount of mass required in Bastian et al.'s scenario.Comment: Accepted for publication in A&A, 15 pages, 5 figures, 4 table

    On the origin of the difference between the runaway velocities of the OB-supergiant X-ray Binaries and the Be/X-ray Binaries

    Get PDF
    The recent finding by Chevalier & Ilovaisky (1998) that OB-supergiant X-ray binaries have relatively large runaway velocities whereas Be/X-ray binaries have low runaway velocities, provides confirmation of the current models for the formation of these two types of systems. These predict a difference in runaway velocity of an order of magnitude. This difference basically results from the variation of the fractional helium core mass as a function of stellar mass, in combination with the conservation of orbital angular momentum during the mass transfer phase that preceded the formation of the compact object in the system. This combination results into: (i) Systematically narrower pre-supernova orbits in the OB-supergiant systems than in the Be-systems, and (ii) A larger fractional amount of mass ejected in the supernovae in high-mass systems relative to systems of lower mass. Regardless of possible kick velocities imparted to neutron stars at birth, this combination leads to a considerable difference in average runaway velocity between these two groups. The observed low runaway velocities of the Be/X-ray binaries confirm that in most cases not more than 1 to 2Msun was ejected in the supernovae that produced their neutron stars. This, in combination with the --on average-- large orbital eccentricities of these systems, indicates that their neutron stars must have received a velocity kick in the range 60 - 250 km/s at birth.Comment: reduced abstract, 13 pages, accepted by A&

    Modelling Collision Products of Triple-Star Mergers

    Full text link
    In dense stellar clusters, binary-single and binary-binary encounters can ultimately lead to collisions involving two or more stars. A comprehensive survey of multi-star collisions would need to explore an enormous amount of parameter space, but here we focus on a number of representative cases involving low-mass main-sequence stars. Using both Smoothed Particle Hydrodynamics (SPH) calculations and a much faster fluid sorting software package (MMAS), we study scenarios in which a newly formed product from an initial collision collides with a third parent star. By varying the order in which the parent stars collide, as well as the orbital parameters of the collision trajectories, we investigate how factors such as shock heating affect the chemical composition and structure profiles of the collision product. Our simulations and models indicate that the distribution of most chemical elements within the final product is not significantly affected by the order in which the stars collide, the direction of approach of the third parent star, or the periastron separations of the collisions. We find that the sizes of the products, and hence their collisional cross sections for subsequent encounters, are sensitive to the order and geometry of the collisions. For the cases that we consider, the radius of the product formed in the first (single-single star) collision ranges anywhere from roughly 2 to 30 times the sum of the radii of its parent stars. The final product formed in our triple-star collisions can easily be as large or larger than a typical red giant. We therefore expect the collisional cross section of a newly formed product to be greatly enhanced over that of a thermally relaxed star of the same mass.Comment: 20 pages, submitted to MNRA

    How many young star clusters exist in the Galactic center?

    Get PDF
    We study the evolution and observability of young compact star clusters within about 200pc of the Galactic center. Calculations are performed using direct N-body integration on the GRAPE-4, including the effects of both stellar and binary evolution and the external influence of the Galaxy. The results of these detailed calculations are used to calibrate a simplified model applicable over a wider range of cluster initial conditions. We find that clusters within 200 pc from the Galactic center dissolve within about 70 Myr. However, their projected densities drop below the background density in the direction of the Galactic center within 20 Myr, effectively making these clusters undetectable after that time. Clusters farther from the Galactic center but at the same projected distance are more strongly affected by this selection effect, and may go undetected for their entire lifetimes. Based on these findings, we conclude that the region within 200 pc of the Galactic center could easily harbor some 50 clusters with properties similar to those of the Arches or the Quintuplet systems.Comment: ApJ Letters in pres
    corecore