66 research outputs found

    Evaluation of rK39 rapid diagnostic tests for canine visceral leishmaniasis : longitudinal study and meta-analysis

    Get PDF
    Canine visceral leishmaniasis is a vector-borne disease caused by the intracellular parasite Leishmania infantum. It is an important veterinary disease, and dogs are also the main animal reservoir for human infection. The disease is widespread in the Mediterranean area, and parts of Asia and South and Central America, and is potentially fatal in both dogs and humans unless treated. Diagnosis of canine infections requires serological or molecular tests. Detection of infection in dogs is important prior to treatment, and in epidemiological studies and control programmes, and a sensitive and specific rapid diagnostic test would be very useful. Rapid diagnostic tests (RDTs) have been developed, but their diagnostic performance has been reported to be variable. We evaluated the sensitivity of a RDT based on serological detection of the rK39 antigen in a cohort of naturally infected Brazilian dogs. The sensitivity of the test to detect infection was relatively low, but increased with time since infection and the severity of infection. We then carried out a meta-analysis of published studies of rK39 RDTs, evaluating the sensitivity to detect disease and infection. The results suggest that rK39 RDTs may be useful in a veterinary clinical setting, but the sensitivity to detect infection is too low for operational control programmes

    Improved Canine and Human Visceral Leishmaniasis Immunodiagnosis Using Combinations of Synthetic Peptides in Enzyme-Linked Immunosorbent Assay

    Get PDF
    Visceral leishmaniasis is endemic in many areas of tropical and subtropical America where it constitutes a significant public health problem. It is usually diagnosed by enzyme-linked immunosorbent assays (ELISA) using crude Leishmania antigens, but a variety of other immunological methods may also be applied. Although these approaches are useful, historically their sensitivity and specificity have often been compromised by the use of complex mixtures of antigens. In this context, the use of combinations of purified, well-characterized antigens appears preferable and may yield better results. In the present study, combinations of peptides derived from the previously described Leishmania diagnostic antigens A2, NH, LACK and K39 were used in ELISA against sera from 106 dogs and 44 human patients. Improved sensitivities and specificities, close to 100%, for both sera of patients and dogs was observed for ELISA using some combinations of the peptides, including the detection of VL in dogs with low anti-Leishmania antibody titers and asymptomatic infection. So, the use of combinations of B cell predicted synthetic peptides derived from antigens A2, NH, LACK and K39 may provide an alternative for improved sensitivities and specificities for immunodiagnostic assays of VL

    High-Throughput Analysis of Synthetic Peptides for the Immunodiagnosis of Canine Visceral Leishmaniasis

    Get PDF
    Globally, the number of new human cases of visceral leishmaniasis (VL) is estimated to be approximately 500,000 per year. This is the most severe of all forms of leishmaniasis, and the zoonotic form of VL, caused by Leishmania infantum (also known as Leishmania chagasi), represents 20% of human visceral leishmaniasis worldwide; additionally, its prevalence is increasing in urban and peri-urban areas of the tropics. In Brazil, the identification and elimination of infected dogs, which act as a reservoir for Leishmania parasites, is a control measure employed in addition to the use of insecticides against the vectors and the identification and treatment of infected humans. Currently, the diagnostic methods employed to identify infected animals are not able to detect all of these dogs, which compromises the effectiveness of control measures. Moreover, one of the most important issues in controlling VL is the difficulty of diagnosing asymptomatic dogs, which act as parasite reservoirs. Therefore, to contribute to the improvement of the diagnostic methods for CVL, we aimed to identify and characterize new antigens that were more sensitive and specific and could be applied in epidemiologic surveys

    Control of Visceral Leishmaniasis in Latin America—A Systematic Review

    Get PDF
    Visceral leishmaniasis is a vector-borne disease characterized by fever, spleen and liver enlargement, and low blood cell counts. In the Americas VL is zoonotic, with domestic dogs as main animal reservoirs, and is caused by the intracellular parasite Leishmania infantum (syn. Leishmania chagasi). Humans acquire the infection through the bite of an infected sand fly. The disease is potentially lethal if untreated. VL is reported from Mexico to Argentina, with recent trends showing a rapid spread in Brazil. Control measures directed against the canine reservoir and insect vectors have been unsuccessful, and early detection and treatment of human cases remains as the most important strategy to reduce case fatality. Well-designed studies evaluating diagnosis, treatment, and prevention/control interventions are scarce. The available scientific evidence reasonably supports the use of rapid diagnostic tests for the diagnosis of human disease. Properly designed randomized controlled trials following good clinical practices are needed to inform drug policy. Routine control strategies against the canine reservoirs and insect vectors are based on weak and conflicting evidence, and vector control strategies and vaccine development should constitute research priorities

    The Genetic Structure of Leishmania infantum Populations in Brazil and Its Possible Association with the Transmission Cycle of Visceral Leishmaniasis

    Get PDF
    Leishmania infantum is the etiologic agent of visceral leishmaniasis (VL) in the Americas, Mediterranean basin and West and Central Asia. Although the geographic structure of L. infantum populations from the Old World have been described, few studies have addressed the population structure of this parasite in the Neotropical region. We employed 14 microsatellites to analyze the population structure of the L. infantum strains isolated from humans and dogs from most of the Brazilian states endemic for VL and from Paraguay. The results indicate a low genetic diversity, high inbreeding estimates and a depletion of heterozygotes, which together indicate a predominantly clonal breeding system, but signs of sexual events are also present. Three populations were identified from the clustering analysis, and they were well supported by F statistics inferences and partially corroborated by distance-based. POP1 (111 strains) was observed in all but one endemic area. POP2 (31 strains) is also well-dispersed, but it was the predominant population in Mato Grosso (MT). POP3 (31 strains) was less dispersed, and it was observed primarily in Mato Grosso do Sul (MS). Strains originated from an outbreak of canine VL in Southern Brazil were grouped in POP1 with those from Paraguay, which corroborates the hypothesis of dispersal from Northeastern Argentina and Paraguay. The distribution of VL in MS seems to follow the west-east construction of the Bolivia-Brazil pipeline from Corumbá municipality. This may have resulted in a strong association of POP3 and Lutzomyia cruzi, which is the main VL vector in Corumbá, and a dispersion of this population in this region that was shaped by human interference. This vector also occurs in MT and may influence the structure of POP2. This paper presents significant advances in the understanding of the population structure of L. infantum in Brazil and its association with eco-epidemiological aspects of VL

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program
    • …
    corecore