28 research outputs found

    Methicillin-Resistant Staphylococcus epidermidis in Iran: A Systematic Review and Meta-Analysis

    Get PDF
    Objective: Methicillin-resistant Staphylococcus epidermidis (MRSE) remains one of the most prevalent drug-resistant bacteria causing health care infections. Limited data are available about how the frequency of MRSE changed in Iran over the past years. The current study aimed at determining the frequency of MRSE in different cities of Iran. Methods: Databases including Web of Sciences, Scopus, Embase, Medline, and Iranian databases were searched to find studies addressing the frequency of MRSE in Iran published from Mar 2006 to Jan 2016. The data were analyzed using comprehensive meta-analysis version 2.2 (Biostat). Of the 139 records identified in the databases, 15 studies met the inclusion criteria. Results: The analyses showed that the frequency of MRSE infections was 73.9% [95% confidence interval (95% CI) 61.4 - 83.4] among culture-positive cases of S. epidermidis in different parts of Iran. The frequency of MRSE was higher in the studies conducted from 2011 to 2015, based on further stratified analyses. Conclusions: The regular surveillance on antimicrobial susceptibility pattern and formulation of definite antibiotic policy may control high rate of MRSE associated infections in Iran. Moreover, rapid and reliable diagnosis of MRSE isolates and regular screening of the personnel and surfaces of hospitals in terms of MRSE are indispensable

    Global Study of Viral Meningitis: A Systematic Review and Meta-analysis

    Get PDF
    Meningitis can quickly become a life-threatening sickness and therefore is considered a medical emergency. Viruses, after bacteria, are known as main pathogens involved in meningitis; therefore, we investigated the prevalence of viral meningitis worldwide and evaluated the clinical and preclinical features for rapid detection of viral meningitis. The results showed that the most prevalent viruses in viral meningitis are Enterovirus, Coxaci, Tick-borne encephalitis virus, Herpesviridae family; and the most prevalent viruses in aseptic meningitis are Echovirus, Enterovirus, Coxaci and HSV. The findings revealed differences in the prevalence of various viruses in these two types of meningitis, even though there was no significant difference in clinical manifestations between viral and bacterial meningitis. This indicates the importance of laboratory diagnostic methods for discriminating between these two types of meningitis

    Diagnostic Accuracy of Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis: A Systematic Review with Meta-Analysis

    Get PDF
    Introduction: Pyrazinamide (PZA) susceptibility testing plays a critical role in determining the appropriate treatment regimens for multidrug-resistant tuberculosis. We conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of sequencing PZA susceptibility tests against culture-based susceptibility testing methods as the reference standard. Methods: We searched the MEDLINE/PubMed, Embase, and Web of Science databases for the relevant records. The QUADAS-2 tool was used to assess the quality of the studies. Diagnostic accuracy measures (i.e., sensitivity and specificity) were pooled with a random-effects model. All statistical analyses were performed with Meta-DiSc (version 1.4, Cochrane Colloquium, Barcelona, Spain), STATA (version 14, Stata Corporation, College Station, TX), and RevMan (version 5.3, The Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, Denmark) software. Results: A total of 72 articles, published between 2000 and 2019, comprising data for 8,701 isolates of Mycobacterium tuberculosis were included in the final analysis. The pooled sensitivity and specificity of the PZA sequencing test against all reference tests (the combination of BACTEC mycobacteria growth indicator tube 960 (MGIT 960), BACTEC 460, and proportion method) were 87% (95% CI: 85–88) and 94.7% (95% CI: 94–95). The positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the curve estimates were found to be 12.0 (95% CI: 9.0–16.0), 0.17 (95% CI: 0.13–0.21), 106 (95% CI: 71–158), and 96%, respectively. Deek's test result indicated a low likelihood for publication bias (p = 0.01). Conclusions: Our analysis indicated that PZA sequencing may be used in combination with conventional tests due to the advantage of the time to result and in scenarios where culture tests are not feasible. Further work to improve molecular tests would benefit from the availability of standardized reference standards and improvements to the methodology

    Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults.

    Get PDF
    BACKGROUND: Xpert MTB/RIF Ultra (Xpert Ultra) and Xpert MTB/RIF are World Health Organization (WHO)-recommended rapid nucleic acid amplification tests (NAATs) widely used for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum. To extend our previous review on extrapulmonary tuberculosis (Kohli 2018), we performed this update to inform updated WHO policy (WHO Consolidated Guidelines (Module 3) 2020). OBJECTIVES: To estimate diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for extrapulmonary tuberculosis and rifampicin resistance in adults with presumptive extrapulmonary tuberculosis. SEARCH METHODS: Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, 2 August 2019 and 28 January 2020 (Xpert Ultra studies), without language restriction. SELECTION CRITERIA: Cross-sectional and cohort studies using non-respiratory specimens. Forms of extrapulmonary tuberculosis: tuberculous meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, disseminated tuberculosis. Reference standards were culture and a study-defined composite reference standard (tuberculosis detection); phenotypic drug susceptibility testing and line probe assays (rifampicin resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias and applicability using QUADAS-2. For tuberculosis detection, we performed separate analyses by specimen type and reference standard using the bivariate model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs). We applied a latent class meta-analysis model to three forms of extrapulmonary tuberculosis. We assessed certainty of evidence using GRADE. MAIN RESULTS: 69 studies: 67 evaluated Xpert MTB/RIF and 11 evaluated Xpert Ultra, of which nine evaluated both tests. Most studies were conducted in China, India, South Africa, and Uganda. Overall, risk of bias was low for patient selection, index test, and flow and timing domains, and low (49%) or unclear (43%) for the reference standard domain. Applicability for the patient selection domain was unclear for most studies because we were unsure of the clinical settings. Cerebrospinal fluid Xpert Ultra (6 studies) Xpert Ultra pooled sensitivity and specificity (95% CrI) against culture were 89.4% (79.1 to 95.6) (89 participants; low-certainty evidence) and 91.2% (83.2 to 95.7) (386 participants; moderate-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 168 would be Xpert Ultra-positive: of these, 79 (47%) would not have tuberculosis (false-positives) and 832 would be Xpert Ultra-negative: of these, 11 (1%) would have tuberculosis (false-negatives). Xpert MTB/RIF (30 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 71.1% (62.8 to 79.1) (571 participants; moderate-certainty evidence) and 96.9% (95.4 to 98.0) (2824 participants; high-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 99 would be Xpert MTB/RIF-positive: of these, 28 (28%) would not have tuberculosis; and 901 would be Xpert MTB/RIF-negative: of these, 29 (3%) would have tuberculosis. Pleural fluid Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity against culture were 75.0% (58.0 to 86.4) (158 participants; very low-certainty evidence) and 87.0% (63.1 to 97.9) (240 participants; very low-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 192 would be Xpert Ultra-positive: of these, 117 (61%) would not have tuberculosis; and 808 would be Xpert Ultra-negative: of these, 25 (3%) would have tuberculosis. Xpert MTB/RIF (25 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 49.5% (39.8 to 59.9) (644 participants; low-certainty evidence) and 98.9% (97.6 to 99.7) (2421 participants; high-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 60 would be Xpert MTB/RIF-positive: of these, 10 (17%) would not have tuberculosis; and 940 would be Xpert MTB/RIF-negative: of these, 50 (5%) would have tuberculosis. Lymph node aspirate Xpert Ultra (1 study) Xpert Ultra sensitivity and specificity (95% confidence interval) against composite reference standard were 70% (51 to 85) (30 participants; very low-certainty evidence) and 100% (92 to 100) (43 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 70 would be Xpert Ultra-positive and 0 (0%) would not have tuberculosis; 930 would be Xpert Ultra-negative and 30 (3%) would have tuberculosis. Xpert MTB/RIF (4 studies) Xpert MTB/RIF pooled sensitivity and specificity against composite reference standard were 81.6% (61.9 to 93.3) (377 participants; low-certainty evidence) and 96.4% (91.3 to 98.6) (302 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 118 would be Xpert MTB/RIF-positive and 37 (31%) would not have tuberculosis; 882 would be Xpert MTB/RIF-negative and 19 (2%) would have tuberculosis. In lymph node aspirate, Xpert MTB/RIF pooled specificity against culture was 86.2% (78.0 to 92.3), lower than that against a composite reference standard. Using the latent class model, Xpert MTB/RIF pooled specificity was 99.5% (99.1 to 99.7), similar to that observed with a composite reference standard. Rifampicin resistance Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity were 100.0% (95.1 to 100.0), (24 participants; low-certainty evidence) and 100.0% (99.0 to 100.0) (105 participants; moderate-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 100 would be Xpert Ultra-positive (resistant): of these, zero (0%) would not have rifampicin resistance; and 900 would be Xpert Ultra-negative (susceptible): of these, zero (0%) would have rifampicin resistance. Xpert MTB/RIF (19 studies) Xpert MTB/RIF pooled sensitivity and specificity were 96.5% (91.9 to 98.8) (148 participants; high-certainty evidence) and 99.1% (98.0 to 99.7) (822 participants; high-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 105 would be Xpert MTB/RIF-positive (resistant): of these, 8 (8%) would not have rifampicin resistance; and 895 would be Xpert MTB/RIF-negative (susceptible): of these, 3 (0.3%) would have rifampicin resistance. AUTHORS' CONCLUSIONS: Xpert Ultra and Xpert MTB/RIF may be helpful in diagnosing extrapulmonary tuberculosis. Sensitivity varies across different extrapulmonary specimens: while for most specimens specificity is high, the tests rarely yield a positive result for people without tuberculosis. For tuberculous meningitis, Xpert Ultra had higher sensitivity and lower specificity than Xpert MTB/RIF against culture. Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity for rifampicin resistance. Future research should acknowledge the concern associated with culture as a reference standard in paucibacillary specimens and consider ways to address this limitation

    Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus

    No full text
    The present study surveys potential antibacterial synergism effects of silver nitrate with eight other metal or metalloid-based antimicrobials (MBAs), including silver nitrate, copper (II) sulfate, gallium (III) nitrate, nickel sulfate, hydrogen tetrachloroaurate (III) trihydrate (gold), aluminum sulfate, sodium selenite, potassium tellurite, and zinc sulfate. Bacteriostatic and bactericidal susceptibility testing explored antibacterial synergism potency of 5760 combinations of MBAs against three bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) in three different media. Silver nitrate in combination with potassium tellurite, zinc sulfate, and tetrachloroaurate trihydrate had remarkable bactericidal and bacteriostatic synergism effects. Synergism properties of MBAs decreased effective antibacterial concentrations remarkably and bacterial cell count decreased by 8.72 log10 colony-forming units (CFU)/mL in E. coli, 9.8 log10 CFU/mL in S. aureus, and 12.3 log10 CFU/mL in P. aeruginosa, compared to each MBA alone. Furthermore, most of the MBA combinations inhibited the recovery of bacteria; for instance, the combination of silver nitrate–tetrachloroaurate against P. aeruginosa inhibited the recovery of bacteria, while three-fold higher concentration of silver nitrate and two-fold higher concentration of tetrachloroaurate were required for inhibition of recovery when used individually. Overall, higher synergism was typically obtained in simulated wound fluid (SWF) rather than laboratory media. Unexpectedly, the combination of A silver nitrate–potassium tellurite had antagonistic bacteriostatic effects in Luria broth (LB) media for all three strains, while the combination of silver nitrate–potassium tellurite had the highest bacteriostatic and bactericidal synergism in SWF. Here, we identify the most effective antibacterial MBAs formulated against each of the Gram-positive and Gram-negative pathogen indicator strains

    Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin

    No full text
    Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model

    Nanomaterials in Wound Healing and Infection Control

    No full text
    Wounds continue to be a serious medical concern due to their increasing incidence from injuries, surgery, burns and chronic diseases such as diabetes. Delays in the healing process are influenced by infectious microbes, especially when they are in the biofilm form, which leads to a persistent infection. Biofilms are well known for their increased antibiotic resistance. Therefore, the development of novel wound dressing drug formulations and materials with combined antibacterial, antibiofilm and wound healing properties are required. Nanomaterials (NM) have unique properties due to their size and very large surface area that leads to a wide range of applications. Several NMs have antimicrobial activity combined with wound regeneration features thus give them promising applicability to a variety of wound types. The idea of NM-based antibiotics has been around for a decade at least and there are many recent reviews of the use of nanomaterials as antimicrobials. However, far less attention has been given to exploring if these NMs actually improve wound healing outcomes. In this review, we present an overview of different types of nanomaterials explored specifically for wound healing properties combined with infection control

    Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

    No full text
    The current study systematically reviewed, summarized and meta-analyzed the clinical features of the vaccines in clinical trials to provide a better estimate of their efficacy, side effects and immunogenicity. All relevant publications were systematically searched and collected from major databases up to 12 March 2021. A total of 25 RCTs (123 datasets), 58,889 cases that received the COVID-19 vaccine and 46,638 controls who received placebo were included in the meta-analysis. In total, mRNA-based and adenovirus-vectored COVID-19 vaccines had 94.6% (95% CI 0.936–0.954) and 80.2% (95% CI 0.56–0.93) efficacy in phase II/III RCTs, respectively. Efficacy of the adenovirus-vectored vaccine after the first (97.6%; 95% CI 0.939–0.997) and second (98.2%; 95% CI 0.980–0.984) doses was the highest against receptor-binding domain (RBD) antigen after 3 weeks of injections. The mRNA-based vaccines had the highest level of side effects reported except for diarrhea and arthralgia. Aluminum-adjuvanted vaccines had the lowest systemic and local side effects between vaccines’ adjuvant or without adjuvant, except for injection site redness. The adenovirus-vectored and mRNA-based vaccines for COVID-19 showed the highest efficacy after first and second doses, respectively. The mRNA-based vaccines had higher side effects. Remarkably few experienced extreme adverse effects and all stimulated robust immune responses

    Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa

    No full text
    ABSTRACT The constant, ever-increasing antibiotic resistance crisis leads to the announcement of “urgent, novel antibiotics needed” by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change

    New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria

    No full text
    Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria
    corecore