7 research outputs found

    A global compilation of diatom silica oxygen isotope records from lake sediment - trends and implications for climate reconstruction

    Get PDF
    \ua9 Copyright: Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times <100 years. For mid- to high-latitude (>45\ub0N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions

    A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Oxygen isotopes in biogenic silica (δ 18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ 18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ 18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times 45°N) lakes, we find common δ 18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions.Peer reviewe

    A global compilation of diatom silica oxygen isotope records from lake sediment - trends and implications for climate reconstruction

    No full text
    Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial–interglacial cycles. The best coverage in number of records (N = 37) and data points (N = 2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times  45° N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions

    A global compilation of diatom silica oxygen isotope records from lake sediment – trends, and implications for climate reconstruction

    No full text
    International audienceOxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy–model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes and lake evaporation. While every lake will have its own set of drivers of d18O, here we explore the extent to which regional or even global signals emerge from a series of palaeoenvironmental records. For this purpose, we have identified and compiled 71 down–core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution ranging from decadal–scale records covering the last 150 years to records with multi–millennial scale resolution spanning glacial–interglacial cycles. Best coverage in number of records (N = 37) and datapoints (N = 2112) is available for northern hemispheric (NH) extra–tropic regions throughout the Holocene (corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times 45° N) lakes, we find common δ18OBSi patterns during both the Holocene and the Common Era and maxima and minima corresponding to known climate episodes such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long–term Tair changes supported by previously published climate reconstructions from other archives as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratopic lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) time scales despite stemming from different lakes in different geographic locations and constitute a valuable proxy for past climate reconstructions

    A global compilation of diatom silica oxygen isotope records from lake sediment

    No full text
    Oxygen isotopes in biogenic silica (δ18O BSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy–model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (T air ), atmospheric circulation patterns, hydrological changes and lake evaporation. Here, we provide 55 composite down–core records published to date and complemented with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution ranging from decadal–scale records covering the last 150 years to records with multi–millennial scale resolution spanning glacial–interglacial cycles. Best coverage in number of records (N=37) and datapoints (N=2112) is available for northern hemispheric (NH) extra–tropic regions throughout the Holocene (corresponding to Marine Isotope Stage 1; MIS 1)

    A global compilation of diatom silica oxygen isotope records from lake sediment: additional information on the lakes and sites corresponding to the records

    No full text
    Oxygen isotopes in biogenic silica (δ18O BSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy–model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (T air ), atmospheric circulation patterns, hydrological changes and lake evaporation. Here, we provide 55 composite down–core records published to date and complemented with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution ranging from decadal–scale records covering the last 150 years to records with multi–millennial scale resolution spanning glacial–interglacial cycles. Best coverage in number of records (N=37) and datapoints (N=2112) is available for northern hemispheric (NH) extra–tropic regions throughout the Holocene (corresponding to Marine Isotope Stage 1; MIS 1)

    A global compilation of diatom silica oxygen isotope records from lake sediment: individual datasets in a single table

    No full text
    Oxygen isotopes in biogenic silica (δ18O BSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy–model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (T air ), atmospheric circulation patterns, hydrological changes and lake evaporation. Here, we provide 55 composite down–core records published to date and complemented with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution ranging from decadal–scale records covering the last 150 years to records with multi–millennial scale resolution spanning glacial–interglacial cycles. Best coverage in number of records (N=37) and datapoints (N=2112) is available for northern hemispheric (NH) extra–tropic regions throughout the Holocene (corresponding to Marine Isotope Stage 1; MIS 1)
    corecore