2,093 research outputs found

    From Popov-Fedotov trick to universal fermionization

    Full text link
    We show that Popov-Fedotov trick of mapping spin-1/2 lattice systems on two-component fermions with imaginary chemical potential readily generalizes to bosons with a fixed (but not limited) maximal site occupation number, as well as to fermionic Hamiltonians with various constraints on the site Fock states. In a general case, the mapping---fermionization---is on multi-component fermions with many-body non-Hermitian interactions. Additionally, the fermionization approach allows one to convert large many-body couplings into single-particle energies, rendering the diagrammatic series free of large expansion parameters; the latter is essential for the efficiency and convergence of the diagrammatic Monte Carlo method.Comment: 4 pages, no figures (v2 contains some improvements; the most important one is the generic complex chemical potential trick for spins/bosons

    Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

    Get PDF
    The "canonical" variables of the Kosterlitz-Thouless theory--fields Φ0(r)\Phi_0({\bf r}) and ϕ(r)\phi({\bf r}), generally believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn out to be neither vortices and phonons, nor, strictly speaking, {\it canonical} variables. The latter fact explains paradoxes of (i) absence of interaction between Φ0\Phi_0 and ϕ\phi, and (ii) non-physical contribution of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating Φ0\Phi_0 and ϕ\phi to canonical vortex-pair and phonon variables.Comment: 4 pages, RevTe

    Superfluid--Insulator Transition in Commensurate One-Dimensional Bosonic System with Off-Diagonal Disorder

    Get PDF
    We study the nature of the superfluid--insulator quantum phase transition in a one-dimensional system of lattice bosons with off-diagonal disorder in the limit of large integer filling factor. Monte Carlo simulations of two strongly disordered models show that the universality class of the transition in question is the same as that of the superfluid--Mott-insulator transition in a pure system. This result can be explained by disorder self-averaging in the superfluid phase and applicability of the standard quantum hydrodynamic action. We also formulate the necessary conditions which should be satisfied by the stong-randomness universality class, if one exists.Comment: 4 pages, 4 figures. Typo in figure 4 of ver. 3 is correcte

    Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations

    Get PDF
    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein—models for α helix–rich and β sheet–rich proteins, respectively—and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures

    Moraine-dammed glacial lakes and threat of glacial debris flows in South-East Kazakhstan

    Get PDF
    Glacier retreat has caused the emergence of numerous moraine-dammed glacial lakes (MGL) over the last century which have become research foci in many mountain regions of the world. Outbursts of MGLs have caused destructive floods and debris flows, leading to numerous human casualties and significant material damage. The mountains of South-Eastern Kazakhstan have also become prone to lake outburst floods and related debris flows, specifically in the second half of the 20th century. This paper presents and reviews existing surveys and knowledge along with results of own investigations on the formation of MGLs and the characteristics of lake outburst floods and debris flows in the Kazakh part of Tien Shan. We suggest a workflow to identify the most dangerous types of lakes and provide information about their morphogenetic features and hazard criteria. The number of MGLs increased since the 1970s with more than 160 existing in 2018. Forty were identified as being dangerous. Forty-eight lake outbursts occurred since 1950 with all the documented events happened between end of June and end of August. The most dangerous outbursts were caused by ruptures in ice-cored moraine dams. Outbursts of nine MGLs caused disastrous debris flows, with some occurring repeatedly. The number of outbursts clearly decreased since the year 2000 compared to 1970–2000. However, due to ongoing glacier retreat new lakes are forming at higher altitudes. Their greater potential energy makes possible future outbursts more dangerous. Re-evaluation of existing methods to calculate the water volume and peak discharge based on bathymetric measurements and observed outbursts revealed that the applied equations provide suitable approximations and allow supporting mitigation and prevention measures. Finally, the presentation of implemented measures to lower the water level using siphons or artificial flow channels shows that they can reduce the lake outburst hazards. However, they are associated with risks and financial costs and it needs to be carefully considered whether protection measures of the endangered areas are more cost effective.Publisher PDFPeer reviewe

    Attacks based on malicious perturbations on image processing systems and defense methods against them

    Get PDF
    Systems implementing artificial intelligence technologies have become widespread due to their effectiveness in solving various applied tasks including computer vision. Image processing through neural networks is also used in securitycritical systems. At the same time, the use of artificial intelligence is associated with characteristic threats including disruption of machine learning models. The phenomenon of triggering an incorrect neural network response by introducing perturbations that are visually imperceptible to a person was first described and attracted the attention of researchers in 2013. Methods of attacks on neural networks based on malicious perturbations have been continuously improved, ways of disrupting the operation of neural networks in processing various types of data and tasks of the target model have been proposed. The threat of disrupting the functioning of neural networks through these attacks has become a significant problem for systems implementing artificial intelligence technologies. Thus, research in the field of countering attacks based on malicious perturbations is very relevant. This article describes current attacks, provides an overview and comparative analysis of such attacks on image processing systems based on artificial intelligence. Approaches to the classification of attacks based on malicious perturbations are formulated. Defense methods against such attacks are considered, their shortcomings are revealed. The limitations of the applied defense methods that reduce the effectiveness of counteraction to attacks are shown. Approaches and practical measures to detect and eliminate harmful disturbances are proposed

    Estimation of the elastic modulus and the work of adhesion of soft materials using the extended Borodich–Galanov (BG) method and depth sensing indentation

    Get PDF
    © 2018 Elsevier Ltd The depth-sensing indentation (DSI) is currently one of the main experimental techniques for studying elastic properties of materials of small volumes. Usually DSI tests are performed using sharp pyramidal indenters and the load-displacement curves obtained are used for estimations of elastic moduli of materials, while the curve analysis for these estimations is based on the assumptions of the Hertz contact theory of non-adhesive contact. The Borodich–Galanov (BG) method provides an alternative methodology for estimations of the elastic moduli along with estimations of the work of adhesion of the contacting pair in a single experiment using the experimental DSI data for spherical indenters. The method assumes fitting the experimental points of the load-displacement curves using a dimensionless expression of an appropriate theory of adhesive contact. Earlier numerical simulations showed that the BG method was robust. Here first the original BG method is modified and then its accuracy in the estimation of the reduced elastic modulus is directly tested by comparison with the results of conventional tensile tests. The method modification is twofold: (i) a two-stage fitting of the theoretical DSI dependency to the experimental data is used and (ii) a new objective functional is introduced which minimizes the squared norm of difference between the theoretical curve and the one used in preliminary data fitting. The direct experimental validation of accuracy and robustness of the BG method has two independent steps. First the material properties of polyvinyl siloxane (PVS) are determined from a DSI data by means of the modified BG method; and then the obtained results for the reduced elastic modulus are compared with the results of tensile tests on dumbbell specimens made of the same charge of PVS. Comparison of the results of the two experiments showed that the absolute minimum in relative difference between individual identified values of the reduced elastic modulus in the two experiments was 3.80%; the absolute maximum of the same quantity was 27.38%; the relative difference in averaged values of the reduced elastic modulus varied in the range 16.20.. 17.09% depending on particular settings used during preliminary fitting. Hence, the comparison of the results shows that the experimental values of the elastic modulus obtained by the tensile tests are in good agreement with the results of the extended BG method. Our analysis shows that unaccounted factors and phenomena tend to decrease the difference in the results of the two experiments. Thus, the robustness and accuracy of the proposed extension of the BG method has been directly validated

    Crowdsourcing Fungal Biodiversity : Revision of Inaturalist Observations in Northwestern Siberia

    Get PDF
    The paper presents the first analysis of crowdsourcing data of all observations of fungi (including lichens) and myxomycetes in Northwestern Siberia uploaded to iNaturalist.org to date (24.02.2022). The Introduction presents an analysis of fungal diversity crowdsourcing globally, in Russia, and in the region of interest. Materials and methods describe the protocol of uploading data to iNaturalist.org, the structure of the crowdsourcing community. initiative to revise the accumulated data. procedures of data analysis, and compilation of a dataset of revised crowdsourced data. The Results present the analysis of accumulated data by several parameters: temporal, geographical and taxonomical scope, observation and identification efforts, identifiability of various taxa, species novelty and Red Data Book categories and the protection status of registered observations. The Discussion provides data on usability of crowdsourcing data for biodiversity research and conservation of fungi, including pros and contras. The Electronic Supplements to the paper include an annotated checklist of observations of protected species with information on Red Data Book categories and the protection status, and an annotated checklist of regional records of new taxa. The paper is supplemented with a dataset of about 15 000 revised and annotated records available through Global Biodiversity Information Facility (GBIF). The tradition of crowdsourcing is rooted in mycological societies around the world, including Russia. In Northwestern Siberia, a regional mycological club was established in 2018, encouraging its members to contribute observations of fungi on iNaturalist.org. A total of about 15 000 observations of fungi and myxomycetes were uploaded so far, by about 200 observers, from three administrative regions (Yamalo-Nenetsky Autonomous Okrug, Khanty-Mansi Autonomous Okrug, and Tyumen Region). The geographical coverage of crowdsourcing observations remains low. However. the observation activity has increased in the last four years. The goal of this study consisted of a collaborative effort of professional mycologists invited to help with the identification of these observations and analysis of the accumulated data. As a result, all observations were reviewed by at least one expert. About half of all the observations have been identified reliably to the species level and received Research Grade status. Of those, 90 species (195 records) represented records of taxa new to their respective regions: 876 records of 53 species of protected species provide important data for conservation programmes. The other half of the observations consists of records still under-identified for various reasons: poor quality photographs, complex taxa (impossible to identify without microscopic or molecular study). or lack of experts in a particular taxonomic group. The Discussion section summarises the pros and cons of the use of crowdsourcing for the study and conservation of regional fungal diversity, and summarises the dispute on this subject among mycologists. Further research initiatives involving crowdsourcing data must focus on an increase in the quality of observations and strive to introduce the habit of collecting voucher specimens among the community of amateurs. The timely feedback from experts is also important to provide quality and the increase of personal involvement.Peer reviewe

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
    corecore