We show that Popov-Fedotov trick of mapping spin-1/2 lattice systems on
two-component fermions with imaginary chemical potential readily generalizes to
bosons with a fixed (but not limited) maximal site occupation number, as well
as to fermionic Hamiltonians with various constraints on the site Fock states.
In a general case, the mapping---fermionization---is on multi-component
fermions with many-body non-Hermitian interactions. Additionally, the
fermionization approach allows one to convert large many-body couplings into
single-particle energies, rendering the diagrammatic series free of large
expansion parameters; the latter is essential for the efficiency and
convergence of the diagrammatic Monte Carlo method.Comment: 4 pages, no figures (v2 contains some improvements; the most
important one is the generic complex chemical potential trick for
spins/bosons