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Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

Evgeny Kozik,1 Nikolay Prokof’ev,1, 2, 3 and Boris Svistunov1, 2

1Department of Physics, University of Massachusetts, Amherst, MA 01003
2Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

3Department of Physics, Cornell University, Ithaca, NY 14850

The “canonical” variables of the Kosterlitz-Thouless theory—fields Φ0(r) and ϕ(r), generally
believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn
out to be neither vortices and phonons, nor, strictly speaking, canonical variables. The latter fact
explains paradoxes of (i) absence of interaction between Φ0 and ϕ, and (ii) non-physical contribution
of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating
Φ0 and ϕ to canonical vortex-pair and phonon variables.

PACS numbers: 64.70.-p, 67.40.-w, 67.40.Vs, 47.37.+q

Three decades ago, Kosterlitz and Thouless developed
an accurate renormalization-group description of what is
now called a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [1, 2]—a phase transitions in a wide class of two-
dimensional systems characterized by short-range inter-
actions and global U(1) symmetry. In accordance with
the Mermin-Wagner theorem [3], such systems can not
exhibit long-range order at any finite temperature. In-
stead, the low-temperature phase features divergent long-
wave fluctuations resulting in a power-law decay of phase
correlations at large distances [1]. Kosterlitz and Thou-
less revealed the importance of configurations with point-
like topological defects or topological charges, such as
Coulomb charges in plasma, dislocations in crystals, vor-
tices in superfluid and spin systems, etc. At low tem-
perature, the defects exist only in the form a dilute gas
of bound pairs of opposite topological charges. At higher
temperature, pairs of large separation become more prob-
able and eventual pair dissociation at critical tempera-
ture destroys the algebraic long-range order. Extensive
theoretical work [1, 2, 4–7] provides a complete quanti-
tative description of critical properties in such systems.
The theory is corroborated by comprehensive experi-
mental studies of 4He films [8–11] and superconducting
Josephson arrays [12]. Recent advances in the area of
ultra-cold gases have made it possible to render BKT
transition in optical lattices [13].
The Kosterlitz-Thouless (KT) theory starts with a

generic effective action [2]

A[Φ] = K0

∫

∣

∣∇Φ
∣

∣

2
d2r . (1)

For definiteness, we consider the case of a superfluid film,
in which the field Φ(r) has the meaning of the velocity po-
tential, v = (1/m)∇Φ (we set ~ = 1), andK0 = n0/2mT ,
where m is the mass of a particle and n0 is the “bare”
superfluid number density obtained by averaging out mi-
croscopic fluctuations up to some mesoscopic scale l0.
Hence, n0 ≡ n0(l0). The field Φ is then split,

Φ = Φ0 + ϕ , (2)

into a singular part Φ0, containing all the topological
defects, and a regular part ϕ.

By definition, Φ0 satisfies the non-zero velocity circu-
lation condition

∮

Cj

∇Φ0(r) · dr = 2πlj, (3)

where Cj is a contour enclosing only the j-th defect and
lj are integers, while ∇ϕ is circulation-free. The next
crucial step is to require [2]

∆Φ0(r) = 0 (4)

(except for the isolated points of defects). The standard
motivation of Eq. (4) is that it guarantees that Φ0 mini-
mizes the action when ϕ ≡ 0. The definitions of Φ0 and
ϕ thus become unambiguous and, most importantly, the
action takes the form of two independent terms:

A[Φ] = A[Φ0] + A[ϕ] . (5)

At this point, one conjectures that Φ0 and ϕ corre-
spond to vortices and phonons (spin waves, etc.), respec-
tively. This identification, which might seem to be quite
natural—or at least merely terminological and mathe-
matically irrelevant—is not that innocent. If the two
fields are not canonical vortices and phonons, then one
faces a problem of justifying writing the partition func-
tion in the form [2]

Z ∝

∫

exp {−A[ϕ]}Dϕ

∫

exp {−A[Φ0]}
N
∏

j=1

d2rj , (6)

where rj is the position of the j-th defect and N is the
number of defects. This expression should also include
the Jacobian of the transformation from canonical vari-
ables. Remarkable agreement between the Kosterlitz-
Thouless theory and experimental data suggests that the
Jacobian is unimportant, but without explicitly demon-
strating this fact the theory is incomplete.
Apart from Jacobian, there is also an issue of peculiar

“collective” behavior of formally independent fields Φ0

and ϕ. Asymptotic long-range phase correlations in a
superfluid are due to phonons. The corresponding action

http://arxiv.org/abs/cond-mat/0511127v2


2

in terms of the genuine phonon field ϕ̃ is

Aϕ̃ =
ns

2mT

∫

∣

∣∇ϕ̃
∣

∣

2
d2r , (7)

with ns the macroscopic superfluid density. Would ϕ
stand for phonons, we were to identify its long-wave har-
monics with ϕ̃. This, however, would imply n0(l0) = ns,
which is definitely not the case since Φ0 6= 0 at the length
scale l0. This paradox can be formulated as an observa-
tion that it is impossible to renormalize the sound veloc-
ity by vortex pairs without the phonon-vortex coupling.
The only logical solution is then that ϕ is not a phonon
field.
Another paradoxical circumstance is associated with

interpreting Φ0 as a purely vortex field. In a 2D super-
fluid, all vortices are bound in microscopic pairs and one
would not expect them to be directly observable in long-
range correlation properties. The only physical way for
vortex pairs to manifest themselves at the macroscopic
scale is to renormalize the superfluid density. However,
the requirement (4) implies that vortex pairs do con-
tribute to the long-range correlations. The way they do
it reveals a conspiracy between Φ0 and ϕ [4]. Due to
statistical independence of the fields Φ0 and ϕ, the one-
particle density matrix at large distances,

ρ(r) ∝ 〈 exp[iΦ(r)− iΦ(0)] 〉 , (8)

factorizes: ρ(r) ∝ ΓΦ0
(r) Γϕ(r), where

ΓΦ0
(r) = 〈 exp[iΦ0(r)− iΦ0(0)] 〉 , (9)

Γϕ(r) = 〈 exp[iϕ(r)− iϕ(0)] 〉 . (10)

Remarkably, the independent correlation functions ΓΦ0

and Γϕ make no physical sense separately, since they both
depend on the bare superfluid density n0, but when the
two are combined in ρ(r), the parameter n0 drops out,
and the density matrix decays with the proper exponent
mT/2πns [4].
A rational explanation of this “secret agreement” be-

tween Φ0 and ϕ is that being mathematically indepen-
dent, the two fields are deeply connected physically. The
above-mentioned structure of the correlation function
even suggests a qualitative form of the connection: The
long-wave part of the vortex-pair field Φ0 actually belongs

to phonons, not vortices.
In what follows, we trace the model (1) back to its

dynamical Hamiltonian form and derive the canonical
parametrization of vortices and phonons from that start-
ing point. In doing so, we utilize the formalism recently
developed by two of us [14], from which it is directly
seen that the positions of vortices {rj} and the field ϕ
are canonical variables only in the limiting cases of in-
compressible fluid (ϕ ≡ 0) and vortex-free environment
(Φ0 ≡ 0) respectively. An explicit transform from {rj}
and ϕ(r) to the canonical variables justifies that the de-
viation of the Jacobian from unity is irrelevant in the

context of the KT theory. Our analysis allows us to refor-
mulate KT theory in terms of canonical variables: vortex
pairs and genuine phonons, coupled to each other in the
most intuitive way: Vortex pairs interact with the long-
wave fluctuations of the velocity field precisely the same
way they interact with a homogeneous velocity field. This
interaction naturally accounts for the renormalization of
the long-wavelength-phonon stiffness and leads to the
coarse-grained effective action in the form of Eq. (7).
In complete agreement with physical understanding of
vortex pairs as essentially local objects, we demonstrate
that the far-field of Φ0(r) belongs to phonons. Corre-
spondingly, the long-range decay of phase correlations
is governed by the statistics of long-wavelength phonons
only, i.e. by the effective action (7).
Putting aside the issue of the Jacobian and pior to the

discussion of the dynamic model, a purely statistical in-
sight into the problem can be obtained by constructing
an alternative to (Φ0, ϕ) set of variables. [For simplic-
ity, below we deal with only one vortex-anti-vortex pair;
the generalization to finite (but small) density of pairs
is straightforward.] Consider a vortex pair of separation
R = r1 − r2 located at the point rp = (r1 + r2)/2, where
r1 and r2 are the positions of the vortices with l1 = 1
and l2 = −1 respectively. Introduce an auxiliary field
ϕ0(r) such that it approaches Φ0(r) when |r − rp| ≫ R,
and, in contrast to Φ0(r), is regular at all distances. This
definition fixes the dipole moment of the new field:

∫

r∆ϕ0(r) d
2r = 2π(R× ẑ) , (11)

where ẑ is a unit vector along z-axis. Make a transfor-
mation

ϕ(r) = ϕ̃(r) − ϕ0(r) , (12)

which just shifts the field ϕ by a regular (rp,R)-
dependent field ϕ0, and thus does not change the con-
figurational volume: Dϕ = Dϕ̃. After this transforma-
tion, the long-range behavior of the density matrix is
completely described in terms of the filed ϕ̃:

ρ(r) ∝ 〈 exp[iϕ̃(r)− iϕ̃(0)] 〉 . (13)

This simplification comes at a price: the vortex pair now
couples to ϕ̃. The structure of the interaction term be-
tween the pair and the long-wave harmonics of the field
ϕ̃ (such that λ ≫ R, where λ is the characteristic wave-
length) is most transparent. It reads

Aint =
2πn0

mT
(R× ẑ) · ∇ϕ̃

∣

∣

∣

rp

, (14)

i.e. the vortex pair interacts with the long-wave part of
ϕ̃ exactly the same way it would interact with a homo-

geneous velocity flow (1/m)∇ϕ̃
∣

∣

∣

rp

. One does not have

to take this interaction into account explicitly in the KT
renormalization group treatment, since its only relevant
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effect is to replace n0 with ns for phonons. [The effect
of phonons on the statistics of vortex pairs is negligibly
small in the limit of R → ∞, as is clear from a direct
estimate, see also below.] There is little doubt at this
point that ϕ̃ corresponds to genuine phonons and one
just needs to formally demonstrate this fact.
We start with Popov’s hydrodynamic Lagrangian [15],

L =

∫

d2r
[

−n0Φ̇0 − ηϕ̇− ηΦ̇0

]

−H , (15)

H =

∫

d2r
[ n0

2m

∣

∣∇ϕ
∣

∣

2
+

1

2κ
η2

+
n0

2m

∣

∣∇Φ0

∣

∣

2
+ n0v0 · ∇Φ0

]

. (16)

Here, the energy functional H has been expanded to the
leading order with respect to small density fluctuations
η ≪ n0, Φ0 and ϕ are defined by Eqs. (3)-(4), v0 is the
velocity of a global flow, and κ is the compressibility.
The typical vortex core size ∼ a0 =

√

κ/n0m is much
smaller than any other physical length scale.
If the term

∫

d2r ηΦ̇0 ≡ T were absent, η and ϕ would
be the canonical conjugate phonon variables, while

∫

d2r n0Φ̇0 = −2πn0

∑

j

ljyj ẋj , (17)

where (xj , yj) ≡ rj , would imply that xj and yj are the
canonical conjugate vortex variables. However, T is lin-
ear in the time derivatives of xj and yj and also contains
η making the set of variables {η, ϕ}, {rj} not canonical,
and meaning that H in these variables is not a Hamilto-
nian.
We are interested here only in the KT theory for the su-

perfluid phase in the vicinity of the transition, including
the critical point, where the concentration of vortex pairs
of size ∼ R is much smaller than R−2 as R → ∞. Cor-
respondingly, at a phonon wavelength λ only pairs with
R ≪ λ contribute to the renormalization of the sound
velocity. This allows us to use the small parameter

R/λ ≪ 1 (18)

for deriving canonical variables in the form of a regular
perturbative expansion starting from the zeroth approx-
imation {η, ϕ, rj} [14].
It is straightforward to show that

T =
∑

j

2πlj [ẑ×∇Q(rj)] · ṙj , (19)

where Q(r) is defined by ∆Q(r) = η(r). We first switch
to the Fourier representation of {η, ϕ}:

η(r) =
∑

q

√

ωqκ/2V
[

eiqr cq + e−iqr c∗
q

]

,

ϕ(r) = −i
∑

q

√

1/2V ωqκ
[

eiqr cq − e−iqr c∗
q

]

, (20)

where ωq = (
√

n0/κm) q and {cq, c
∗
q
} are resembling

(and to the zeroth approximation coincide with) the
classical-field counterparts of phonon creation and an-
nihilation operators, and V is the system volume. Let
the vortex (l1 = 1) and the anti-vortex (l2 = −1) in a
pair have coordinates r1 = rp +R/2 and r2 = rp −R/2
respectively. Next, we expand Q(rj) in T into series with
respect to qR ≪ 1. The resulting terms are eliminated
by iteratively correcting the variables {rj}, {cq, c

∗
q
} as

described in Ref. [14], so that the Lagrangian takes on
the canonical form

L =
∑

q

i ˙̃cqc̃
∗
q
+ 2πn0

∑

j

lj ỹj ˙̃xj −H{r̃j , c̃q, c̃
†
q
} , (21)

where r̃j = (x̃j , ỹj) and c̃q,c̃
∗
q
are the Hamiltonian vari-

ables. For our purposes we shall need only the leading
correction, which does not change the vortex variables,

rj = r̃j , (22)

and for the phonon variables, yields

cq = c̃q + 2π

√

n0 a0 q

2V2

[qxR̃y − qyR̃x]

q2
eiqr̃p , (23)

where an equivalent set of vortex variables, R̃ = r̃1 − r̃2,
r̃p = (r̃1+r̃2)/2, is used. The Jacobian of the transforma-
tion (22)-(23) equals unity. If higher-order (in η/n0 ≪ 1
and qR ≪ 1) terms are included in Eqs. (22)-(23), the
deviation of the Jacobian from unity is of the order of
(η/n0)(qR). From now on we omit the tildes over the
vortex canonical variables in view of Eq. (22).
The canonical phonon fields, η̃, ϕ̃, are defined anal-

ogously to (20), with {c̃q, c̃
∗
q
} replacing {cq, c

∗
q
}. After

substituting (23) for cq in (20) and taking the sum over
q the original variable ϕ is expressed in terms of the
canonical variables as

ϕ(r) = ϕ̃(r) −
[(r− rp)yRx − (r− rp)xRy]

|r− rp|2
. (24)

Now we note that at large distances from the vortex pair
|r− rp| ≫ R, the field Φ0(r) is given by [4]

Φ0(r) =
[(r− rp)yRx − (r− rp)xRy]

|r− rp|2
. (25)

Along with Eq. (24), this implies that sufficiently far from
rp, Φ0(r) does not belong to the vortex-anti-vortex pair
at all, but is actually a part of the phonon field ϕ̃.
After a standard algebra, the Hamiltonian assumes the

form:

H = Hv +Hph +Hint1 +Hint2 , (26)

Hv =
2πn0

m
ln(R/l0) + 2Ec,

Hph =

∫

d2r
[ n0

2m

∣

∣∇ϕ̃
∣

∣

2
+

1

2κ
η̃2
]

,

Hint1 = 2πn0 (R× ẑ) · v0,

Hint2 =
2πn0

m
(R× ẑ) · ∇ϕ̃

∣

∣

∣

rp

.
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This form is almost identical to the original effective ac-
tion in terms of R and ϕ of Refs. [2, 4–6]. Besides the
presence of η, which is trivially integrated out in the par-
tition function, the only distinctive feature of the Hamil-
tonian (26) is the term Hint2, which couples the vortex
dipole moment R to the fluid velocity in the sound wave
∝ ∇ϕ̃

∣

∣

rp
.

Consider the thermodynamics of the system (26) near
the critical point Tc = πns/2m. The coupling term Hint2

does not change the statistics of vortices, since its typical
value is small, Hint2/T ∼ qR . 1, whereas the contribu-
tion of Hv diverges logarithmically. Therefore, the su-
perfluid density, ns = (1/mV ) ∂2F/∂v20α

∣

∣

v0=0
, α = x, y,

where F = −T lnZ, is given by the Kosterlitz renormal-
ization group flow [4]. In contrast, Hint2 is essential for
the phonon statistics. Since its structure is identical to
the vortex coupling to the uniform flow, averaging overR
and rp straightforwardly leads to the coarse-grained ef-
fective action for the long-wavelength phonons governed
by the renormalized stiffness, Eq. (7).
To summarize, we have shown that the simplicity of the

parametrization (2)-(4)—the statistical independence of
the fields Φ0 and ϕ—comes at a price of substantial lack
of its physical meaning, apart from inconvenience of cal-
culating off-diagonal correlators, where direct contribu-
tion of vortex pairs has to be explicitly evaluated with
the only goal to replace bare superfluid density n0 with
its renormalized value. An alternative parametrization
in terms of phonon variables (or their XY equivalents)
renders the Kosterlitz-Thouless scheme even more math-
ematically simple and accurate, while making it physi-
cally transparent. The vortex-phonon interaction that
appears in the effective Hamiltonian does not lead to any
complications, because the structure of this interaction is
exactly the same as that of the interaction of vortex pairs
with a homogeneous external flow and the only effect of
this interaction is to ensure that both phonons and vor-
tices are controlled by the renormalized superfluid den-
sity.

This work was supported by the National Science
Foundation under Grants Nos. PHY-0426881, PHY-
0456261, and by the Sloan Foundation.
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