1,837 research outputs found

    Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo

    Get PDF
    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters

    Invariant color calculus and generalized Balitsky-Kovchegov hierarchy

    Full text link
    We derive generalization of the Balitsky-Kovchegov (BK) equation for a dipole, which consists of a parton and an antiparton of arbitrary charge. At first, we develop one method of indexless transformation of color expressions. The method is based on an evaluation of the Casimir operator on a tensor product. From the JIMWLK equation we derive the evolution equation for a single parton and prove gluon Reggeization in an arbitrary color channel. We show that there is a color duplication of such Regge poles. Higher t-channel color exchange has its own Regge pole, which residue is proportional to the quadratic Casimir. Taking a fundamental representation, we derive the usual BK equation and shed new light on the meaning of linear and nonlinear terms. Finally, we discuss a linearized version of the generalized BK equation.Comment: 10 pages, 1 figure; final version, improved English, slyle correction

    Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering

    Get PDF
    We present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa, reduced scattering coefficient µs', and anisotropy factor g) of the fabricated phantoms were retrieved from spectrophotometric measurements (in the 400–1100 nm wavelength range) using the inverse adding-doubling method. The internal structure of the phantoms was studied under a scanning electron microscope, and the chemical composition was assessed by Raman spectroscopy. Composition of the phantom material is reported along with the full characterization of the produced phantoms and ways to control their parameters

    Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry

    Get PDF
    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1-to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis

    Luminescent upconversion nanoparticles evaluating temperature-induced stress experienced by aquatic organisms due to environmental variations

    Get PDF
    Growing anthropogenic activities are significantly influencing the environment and especially aquatic ecosystems. Therefore, there is an increasing demand to develop techniques for monitoring and assessing freshwater habitats changes so that interventions can prevent irrevocable damage. We explore an approach for screening the temperature-induced stress experienced by aquatic organisms due to environmental variations. Luminescent spectra of upconversion [Y2O3: Yb, Er] particles embedded within Caridina multidentata shrimps are measured, while ambient temperature gradient is inducing stress conditions. The inverse linear dependence of logarithmic ratio of the luminescence intensity provides an effective means for temperature evaluation inside aquatic species in vivo. The measured luminescence shows high photostability on the background of complete absence of biotissues autofluorescence, as well as no obscuration of the luminescence signal from upconversion particles. Current approach of hybrid sensing has a great potential for monitoring of variations in aquatic ecosystems driven by climate changes and pollution

    Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing

    Get PDF
    Delivery and spatial localization of upconversion luminescent microparticles [Y 2 O 3 ;Yb, Er] (mean size ~1.6 μm) and quantum dots (QDs) (CuInS 2 ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ~20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues

    Impact of Plasmonic Nanoparticles on Poikilocytosis and Microrheological Properties of Erythrocytes

    Get PDF
    Plasmonic nanoparticles (NP) possess great potential in photothermal therapy and diagnostics. However, novel NP require a detailed examination for potential toxicity and peculiarities of interaction with cells. Red blood cells (RBC) are important for NP distribution and the development of hybrid RBC-NP delivery systems. This research explored RBC alterations induced by noble (Au and Ag) and nitride-based (TiN and ZrN) laser-synthesized plasmonic NP. Optical tweezers and conventional microscopy modalities indicated the effects arising at non-hemolytic levels, such as RBC poikilocytosis, and alterations in RBC microrheological parameters, elasticity and intercellular interactions. Aggregation and deformability significantly decreased for echinocytes independently of NP type, while for intact RBC, all NP except Ag NP increased the interaction forces but had no effect on RBC deformability. RBC poikilocytosis promoted by NP at concentration 50 μg mL−1 was more pronounced for Au and Ag NP, compared to TiN and ZrN NP. Nitride-based NP demonstrated better biocompatibility towards RBC and higher photothermal efficiency than their noble metal counterparts

    Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer

    Full text link

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605
    corecore