41 research outputs found
Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach
The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a
facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom,
Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins
and enzyme activity. Low CO2 caused many metabolic pathways to be remodeled. Carbon acquisition
enzymes, primarily carbonic anhydrase, stress, degradation and signaling proteins were more abundant
while proteins associated with nitrogen metabolism, energy production and chaperones were less
abundant. A protein with similarities to the Ca2+/ calmodulin dependent protein kinase II_association
domain, having a chloroplast targeting sequence, was only present at low CO2. This protein might
be a specific response to CO2 limitation since a previous study showed that other stresses caused its
reduction. The protein sequence was found in other marine diatoms and may play an important role in their response to low CO2 concentration
Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria
International audienceBACKGROUND: Plasmodium falciparum infections could lead to severe malaria, principally in non-immune individuals as children and travellers from countries exempted of malaria. Severe malaria is often associated with the sequestration of P. falciparum-infected erythrocytes in deep micro-vascular beds via interactions between host endothelial receptors and parasite ligands expressed on the surface of the infected erythrocyte. Although, serological responses from individuals living in endemic areas against proteins expressed at surface of the infected erythrocyte have been largely studied, seldom data are available about the specific targets of antibody response from travellers. METHODS: In order to characterize antigens recognized by traveller sera, a comparison of IgG immune response against membrane protein extracts from uninfected and P. falciparum-infected red blood cells (iRBC), using immunoblots, was performed between non exposed individuals (n = 31) and briefly exposed individuals (BEI) (n = 38) to malaria transmission. RESULTS: Immune profile analysis indicated that eight protein bands from iRBC were significantly detected more frequently in the BEI group. Some of these antigenic proteins were identified by an original immuno-proteomic approach. CONCLUSION: Collectively, these data may be useful to characterize the singular serological immune response against a primary malaria infection in individuals briefly exposed to transmission
The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus
Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle
Kinetic analysis of mouse brain proteome alterations following chikungunya virus infection before and after appearance of clinical symptoms
Recent outbreaks of Chikungunya virus (CHIKV) infection have been characterized by an increasing number of severe cases with atypical manifestations including neurological complications. In parallel, the risk map of CHIKV outbreaks has expanded because of improved vector competence. These features make CHIKV infection a major public health concern that requires a better understanding of the underlying physiopathological processes for the development of antiviral strategies to protect individuals from severe disease. To decipher the mechanisms of CHIKV in
Cooperation between Engulfment Receptors: The Case of ABCA1 and MEGF10
The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm, it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7. Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway
The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells
Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach
<p>Abstract</p> <p>Background</p> <p>Over its life cycle, the <it>Plasmodium falciparum </it>parasite is exposed to different environmental conditions, particularly to variations in O<sub>2 </sub>pressure. For example, the parasite circulates in human venous blood at 5% O<sub>2 </sub>pressure and in arterial blood, particularly in the lungs, at 13% O<sub>2 </sub>pressure. Moreover, the parasite is exposed to 21% O<sub>2 </sub>levels in the salivary glands of mosquitoes.</p> <p>Methods</p> <p>To study the metabolic adaptation of <it>P. falciparum </it>to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.</p> <p>Results</p> <p>Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.</p> <p>Conclusions</p> <p>These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of <it>P. falciparum</it>. This study provides a better understanding of the adaptive capabilities of <it>P. falciparum </it>to environmental changes and may lead to the development of novel therapeutic targets.</p
Characterization of TseB: A new actor in cell wall elongation in Bacillus subtilis
International audienc
Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade.
International audienceLike other multicellular organisms, the model nematode C. elegans responds to infection by inducing the expression of defense genes. Among the genes upregulated in response to a natural fungal pathogen is nlp-29, encoding an antimicrobial peptide. In a screen for mutants that fail to express nlp-29 following fungal infection, we isolated alleles of tpa-1, homologous to the mammalian protein kinase C (PKC) delta. Through epistasis analyses, we demonstrate that C. elegans PKC acts through the p38 MAPK pathway to regulate nlp-29. This involves G protein signaling and specific C-type phospholipases acting upstream of PKCdelta. Unexpectedly and unlike in mammals, tpa-1 does not act via D-type protein kinases, but another C. elegans PKC gene, pkc-3, functions nonredundantly with tpa-1 to control nlp-29 expression. Finally, the tribbles-like kinase nipi-3 acts upstream of PKCdelta in this antifungal immune signaling cascade. These findings greatly expand our understanding of the pathways involved in C. elegans innate immunity