54 research outputs found
Modelling the cascade of biomarker changes in GRN-related frontotemporal dementia
OBJECTIVE: Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way. METHODS: We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes. RESULTS: Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA. CONCLUSION: Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage
Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study
Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers.We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP).CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores.Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.© 2022. The Author(s)
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Several CSF and blood biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), astrogliosis (glial fibrillary acidic protein (GFAP)), and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage FTD, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. 275 presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialised DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on prior diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF NfL, blood pNfH, blood GFAP, and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve (AUC) of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The AUC to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic FTD revealed that NPTX2 and NfL are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions
Estimating and comparing incidence and prevalence of chronic diseases by combining GP registry data: the role of uncertainty
Background: Estimates of disease incidence and prevalence are core indicators of public health. The manner in which these indicators stand out against each other provide guidance as to which diseases are most common and what health problems deserve priority. Our aim was to investigate how routinely collected data from different general practitioner registration networks (GPRNs) can be combined to estimate incidence and prevalence of chronic diseases and to explore the role of uncertainty when comparing diseases. Methods. Incidence and prevalence counts, specified by gender and age, of 18 chronic diseases from 5 GPRNs in the Netherlands from the year 2007 were used as input. Generalized linear mixed models were fitted with the GPRN identifier acting as random intercept, and age and gender as explanatory variables. Using predictions of the regression models we estimated the incidence and prevalence for 18 chronic diseases and calculated a stochastic ranking of diseases in terms of incidence and prevalence per 1,000. Results: Incidence was highest for coronary heart disease and prevalence was highest for diabetes if we looked at the point estimates. The between GPRN variance in general was higher for incidence than for prevalence. Since uncertainty intervals were wide for some diseases and overlapped, the ranking of diseases was subject to uncertainty. For incidence shifts in rank of up to twelve positions were observed. For prevalence, most diseases shifted maximally three or four places in rank. Conclusion: Estimates of incidence and prevalence can be obtained by combining data from GPRNs. Uncertainty in the estimates of absolute figures may lead to different rankings of diseases and, hence, should be taken into consideration when comparing disease incidences and prevalences
Fishery Discards: Factors Affecting Their Variability within a Demersal Trawl Fishery
Discards represent one of the most important issues within current commercial fishing. It occurs for a range of reasons and is influenced by an even more complex array of factors. We address this issue by examining the data collected within the Danish discard observer program and describe the factors that influence discarding within the Danish Kattegat demersal fleet over the period 1997 to 2008. Generalised additive models were used to assess how discards of the 3 main target species, Norway lobster, cod and plaice, and their subcomponents (under and over minimum landings size) are influenced by important factors and their potential relevance to management. Our results show that discards are influenced by a range of different factors that are different for each species and portion of discards. We argue that knowledge about the factors influential to discarding and their use in relation to potential mitigation measures are essential for future fisheries management strategies
Comparing Dutch Case management care models for people with dementia and their caregivers: The design of the COMPAS study
<p>Abstract</p> <p>Background</p> <p>Dementia care in the Netherlands is shifting from fragmented, ad hoc care to more coordinated and personalised care. Case management contributes to this shift. The linkage model and a combination of intensive case management and joint agency care models were selected based on their emerging prominence in the Netherlands. It is unclear if these different forms of case management are more effective than usual care in improving or preserving the functioning and well-being at the patient and caregiver level and at the societal cost. The objective of this article is to describe the design of a study comparing these two case management care models against usual care. Clinical and cost outcomes are investigated while care processes and the facilitators and barriers for implementation of these models are considered.</p> <p>Design</p> <p>Mixed methods include a prospective, observational, controlled, cohort study among persons with dementia and their primary informal caregiver in regions of the Netherlands with and without case management including a qualitative process evaluation. Inclusion criteria for the cohort study are: community-dwelling individuals with a dementia diagnosis who are not terminally-ill or anticipate admission to a nursing home within 6 months and with an informal caregiver who speaks fluent Dutch. Person with dementia-informal caregiver dyads are followed for two years. The primary outcome measure is the Neuropsychiatric Inventory for the people with dementia and the General Health Questionnaire for their caregivers. Secondary outcomes include: quality of life and needs assessment in both persons with dementia and caregivers, activity of daily living, competence of care, and number of crises. Costs are measured from a societal perspective using cost diaries. Process indicators measure the quality of care from the participant’s perspective. The qualitative study uses purposive sampling methods to ensure a wide variation of respondents. Semi-structured interviews with stakeholders based on the theoretical model of adaptive implementation are planned.</p> <p>Discussion</p> <p>This study provides relevant insights into care processes, description of two case management models along with clinical and economic data from persons with dementia and caregivers to clarify important differences in two case management care models compared to usual care.</p
Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design
<p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p
Recommended from our members
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Supplementary material: Supplementary material is available at Brain online: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/brain/145/5/10.1093_brain_awab382/1/awab382_supplementary_data.zip?Expires=1665139578&Signature=C7VStQxldRqnpcchAWh4igaKwveciF~gaQCbInqMnI1YkIFV0euPXlI-0ZlRZ26hbRum6myjm88d3KzOM-wqVG~H7JO9TTUXoyi-n3hRRd1a4Vw0Hay9ykagca92gMqWij5ax4WzsEGlv~dKGSKKivH02pflzQyDAwF6xjjObYRYe29grdOZQ5h8orT6XNAdK5YFqpiX7L6mpVaNs7AOgNDdxtwshaa4kq1xxCgojTgAaIR3WFTFDpHkJ6wnhncxuteykTzq5~w1RCoDIfKQSA9C42i~iWryOeOvjv-P6j-R0tSkDGzFKcI3kUo3lUT9GiPG-vDwAO5EsLkUikJLOw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA.GENFI consortium members
Full details are available in the Supplementary material.
Sónia Afonso, Maria Rosario Almeida, Sarah Anderl-Straub, Christin Andersson, Anna Antonell, Silvana Archetti, Andrea Arighi, Mircea Balasa, Myriam Barandiaran, Nuria Bargalló, Robart Bartha, Benjamin Bender, Alberto Benussi, Luisa Benussi, Valentina Bessi, Giuliano Binetti, Sandra Black, Martina Bocchetta, Sergi Borrego-Ecija, Jose Bras, Rose Bruffaerts, Marta Cañada, Valentina Cantoni, Paola Caroppo, David Cash, Miguel Castelo-Branco, Rhian Convery, Thomas Cope, Giuseppe Di Fede, Alina DÃez, Diana Duro, Chiara Fenoglio, Camilla Ferrari, Catarina B. Ferreira, Nick Fox, Morris Freedman, Giorgio Fumagalli, Alazne Gabilondo, Roberto Gasparotti, Serge Gauthier, Stefano Gazzina, Giorgio Giaccone, Ana Gorostidi, Caroline Greaves, Rita Guerreiro, Tobias Hoegen, Begoña Indakoetxea, Vesna Jelic, Hans-Otto Karnath, Ron Keren, Tobias Langheinrich, Maria João Leitão, Albert Lladó, Gemma Lombardi, Sandra Loosli, Carolina Maruta, Simon Mead, Gabriel Miltenberger, Rick van Minkelen, Sara Mitchell, Katrina Moore, Benedetta Nacmias, Jennifer Nicholas, Linn Öijerstedt, Jaume Olives, Sebastien Ourselin, Alessandro Padovani, Georgia Peakman, Michela Pievani, Yolande Pijnenburg, Cristina Polito, Enrico Premi, Sara Prioni, Catharina Prix, Rosa Rademakers, Veronica Redaelli, Tim Rittman, Ekaterina Rogaeva, Pedro Rosa-Neto, Giacomina Rossi, Martin Rosser, Beatriz Santiago, Elio Scarpini, Sonja Schönecker, Elisa Semler, Rachelle Shafei, Christen Shoesmith, Miguel Tábuas-Pereira, Mikel Tainta, Ricardo Taipa, David Tang-Wai, David L Thomas, Paul Thompson, Hakan Thonberg, Carolyn Timberlake, Pietro Tiraboschi, Emily Todd, Philip Van Damme, Mathieu Vandenbulcke, Michele Veldsman, Ana Verdelho, Jorge Villanua, Jason Warren, Ione Woollacott, Elisabeth Wlasich, Miren Zulaica.Copyright © The Author(s) 2021. Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.Deltaplan Dementie (The Netherlands Organisation
for Health Research and Development and Alzheimer Nederland;
grant numbers 733050813,733050103 and 733050513), the Bluefield
Project to Cure Frontotemporal Dementia, the Dioraphte founda tion (grant number 1402 1300), the European Joint Programme—
Neurodegenerative Disease Research and the Netherlands
Organisation for Health Research and Development (PreFrontALS:
733051042, RiMod-FTD: 733051024); V.V. and S.K. have received
funding from the European Union’s Horizon 2020 research and in novation programme under grant agreement no. 666992
(EuroPOND). E.B. was supported by the Hartstichting (PPP
Allowance, 2018B011); in Belgium by the Mady Browaeys Fonds
voor Onderzoek naar Frontotemporale Degeneratie; in the UK by
the MRC UK GENFI grant (MR/M023664/1); J.D.R. is supported by an
MRC Clinician Scientist Fellowship (MR/M008525/1) and has
received funding from the NIHR Rare Disease Translational
Research Collaboration (BRC149/NS/MH); I.J.S. is supported by the
Alzheimer’s Association; J.B.R. is supported by the Wellcome Trust
(103838); in Spain by the Fundacio´ Marato´ de TV3 (20143810 to
R.S.V.); in Germany by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy within the framework of the Munich Cluster for Systems
Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357
‘Solve-RD’ from the Horizon 2020 Research and Innovation
Programme (to MS); in Sweden by grants from the Swedish FTD
Initiative funded by the Scho¨rling Foundation, grants from JPND
PreFrontALS Swedish Research Council (VR) 529–2014-7504,
Swedish Research Council (VR) 2015–02926, Swedish Research
Council (VR) 2018–02754, Swedish Brain Foundation, Swedish
Alzheimer Foundation, Stockholm County Council ALF, Swedish
Demensfonden, Stohnes foundation, Gamla Tja¨narinnor,
Karolinska Institutet Doctoral Funding and StratNeuro. H.Z. is a
Wallenberg Scholar
Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is poor, with five year osteosarcoma survival rates in people not having improved in decades. For dogs, one year survival rates are only around ~45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human osteosarcoma. Finally, the current position of canine osteosarcoma genetic research is discussed and areas for additional work within the canine population are identified
- …