79 research outputs found

    The Potential for Evolutionary Responses to Cell-Lineage Selection on Growth Form and Its Plasticity in a Red Seaweed

    Get PDF
    Despite much theoretical discussion on the evolutionary significance of intraclonal genetic variation, particularly for modular organisms whose lack of germ-soma segregation allows for variants arising in clonal growth to contribute to evolutionary change, the potential of this variation to fuel adaptation remains surprisingly untested. Given intraclonal variation, mitotic cell lineages, rather than sexual offspring, may frequently act as units of selection. Here, we applied artificial selection to such lineages in the branching red seaweed Asparagopsis armata, targeting aspects of clonal growth form and growth-form plasticity that enhance light acquisition on patchy subtidal reefs and predicting that a genetic basis to intraclonal variation may promote significant responses that cannot accompany phenotypic variation alone. Cell-lineage selection increased variation in branch proliferation among A. armata genets and successfully altered its plasticity to light. Correlated responses in the plasticity of branch elongation, moreover, showed that cell-lineage selection may be transmitted among the plasticities of growth-form traits in A. armata via pleiotropy. By demonstrating significant responses to cell-lineage selection on growth-form plasticity in this seaweed, our study lends support to the notion that intraclonal genetic variation may potentially help clonal organisms to evolve adaptively in the absence of sex and thereby prove surprisingly resilient to environmental change

    The unusual occurrence of green algal balls of <i>Chaetomorpha linum</i> on a beach in Sydney, Australia.

    Get PDF
    In spring 2014, thousands of green algal balls were washed up at Dee Why Beach, Sydney, New South Wales, Australia. Reports of algal balls are uncommon in marine systems, and mass strandings on beaches are even more rare, sparking both public and scientific interest. We identified the algal masses as Chaetomorpha linum by using light microscopy and DNA sequencing. We characterize the size and composition of the balls from Dee Why Beach and compare them to previous records of marine algal balls. We describe the environmental conditions that could explain their appearance, given the ecophysiology of C. linum

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe

    Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?

    No full text
    Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic diversity is assumed to benefit threatened species due to the increased likelihood of those populations having genotypes that can persist under environmental change. To test this idea, we conducted an in situ shading experiment with six geographically distinct meadows of the threatened seagrass Posidonia australis that vary in genetic diversity. Different genotypes within meadows varied widely in their physiological and growth responses to reduced light during a simulated short-term turbidity event. The majority of meadows were resistant to the sudden reduction in light availability, but a small subset of meadows with low genotypic diversity were particularly vulnerable to the early effects of shading, showing substantially reduced growth rates after only 3 weeks. Using the photosynthetic performance (maximum quantum yield) of known genotypes, we simulated meadows of varying genetic diversity to show that higher diversity can increase meadow resilience to stress by ensuring a high probability of including a high-performing genotype. These results support the hypothesis that complementarity among genotypes enhances the adaptive capacity of a population, and have significant implications for the conservation of declining P. australis meadows close to the species range edge on the east coast of Australia, where the genotypic diversity is low

    Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?

    No full text
    © 2017 Evans, Vergés and Poore. Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic diversity is assumed to benefit threatened species due to the increased likelihood of those populations having genotypes that can persist under environmental change. To test this idea, we conducted an in situ shading experiment with six geographically distinct meadows of the threatened seagrass Posidonia australis that vary in genetic diversity. Different genotypes within meadows varied widely in their physiological and growth responses to reduced light during a simulated short-term turbidity event. The majority of meadows were resistant to the sudden reduction in light availability, but a small subset of meadows with low genotypic diversity were particularly vulnerable to the early effects of shading, showing substantially reduced growth rates after only 3 weeks. Using the photosynthetic performance (maximum quantum yield) of known genotypes, we simulated meadows of varying genetic diversity to show that higher diversity can increase meadow resilience to stress by ensuring a high probability of including a high-performing genotype. These results support the hypothesis that complementarity among genotypes enhances the adaptive capacity of a population, and have significant implications for the conservation of declining P. australis meadows close to the species range edge on the east coast of Australia, where the genotypic diversity is low

    Data from: A water-borne pursuit-deterrent signal deployed by a sea urchin

    No full text
    Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover

    Ecology and evolution of host plant use in herbivorous marine amphipods

    Full text link

    Kurnel West Shapefiles

    No full text
    Shapefiles and images for the Posidonia australis meadow located at site 'Kurnell West' (KW) in Botany Ba
    • 

    corecore