47 research outputs found

    New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    Get PDF
    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. Many models for spacetime foam are defined by the accumulation power α\alpha, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here α\alpha is defined by theexpression for the path-length fluctuations, δ\delta \ell, of a source at distance \ell, wherein δ1αPα\delta \ell \simeq \ell^{1 - \alpha} \ell_P^{\alpha}, with P\ell_P being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\em Chandra} to set the constraint α0.58\alpha \gtrsim 0.58, which rules out the random walk model (with α=1/2\alpha = 1/2). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {\em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: α0.67\alpha \gtrsim 0.67 and α0.72\alpha \gtrsim 0.72, respectively. These limits on α\alpha seem to rule out α=2/3\alpha = 2/3, the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres

    Spitzer observations of a gravitationally lensed quasar, QSO 2237+0305

    Full text link
    The four-image gravitationally lensed quasar QSO 2237+0305 is microlensed by stars in the lens galaxy. The amplitude of microlensing variability can be used to infer the relative size of the quasar as a function of wavelength; this provides a test of quasar models. Toward this end, we present Spitzer Space Telescope Infrared Spectrograph and Infrared Array Camera (IRAC) observations of QSO 2237+0305, finding the following. (1) The infrared (IR) spectral energy distribution (SED) is similar to that of other bright radio-quiet quasars, contrary to an earlier claim. (2) A dusty torus model with a small opening angle fits the overall shape of the IR SED well, but the quantitative agreement is poor due to an offset in wavelength of the silicate feature. (3) The flux ratios of the four lensed images can be derived from the IRAC data despite being unresolved. We find that the near-IR fluxes are increasingly affected by microlensing toward shorter wavelengths. (4) The wavelength dependence of the IRAC flux ratios is consistent with the standard quasar model in which an accretion disk and a dusty torus both contribute near 1 micron in the rest frame. This is also consistent with recent IR spectropolarimetry of nearby quasars

    Innovations in the Analysis of Chandra-ACIS Observations

    Full text link
    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly-available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects, and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broad-band photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.Comment: Accepted by the ApJ, 2010 Mar 10 (\#343576) 39 pages, 16 figure

    Evolution of Mouse Hepatitis Virus (MHV) during Chronic Infection: Quasispecies Nature of the Persisting MHV RNA

    Get PDF
    AbstractCoronavirus infection of mice has been used extensively as a model for the study of acute encephalitis and chronic demyelination. To examine the evolution of coronavirus RNA during chronic demyelinating infection, we isolated RNA from intracerebrally inoculated mice at 4, 6, 8, 13, 20, and 42 days postinfection and used reverse transcription-polymerase chain reaction amplification methods (RT-PCR) to detect viral sequences. RNA sequences from two viral structural genes, the spike gene and the nucleocapsid gene, were detected throughout the chronic infection. In contrast, infectious virus was not detectable from brain homongenates beyond 13 days postinfection. These results indicate that coronavirus RNA persists in the brain at times when infectious virus is not detected. To determine if genetic changes were occurring during viral replication in the host, we cloned and sequenced the RT-PCR products from the spike and nucleocapsid regions and analyzed the sequences for mutations. Sequencing of the cloned products revealed that a variety of mutant forms of viral RNA persisted in the CNS, including point mutants, deletion mutants, and termination mutants. The mutations accumulated during persistent infection in both the spike and the nucleocapsid sequences, with greater than 65% of the mutations encoding amino acid changes. These results show that a diverse population or quasispecies consisting of mutant and deletion variant viral RNAs (which may not be capable of producing infectious virus particles) persists in the central nervous system of mice during chronic demyelinating infection. The implications of these results for the role of persistent viral genetic information in the pathogenesis of chronic demyelination are discussed

    Chandra's tryst with SN 1995N

    Full text link
    We present the spectroscopic and imaging analysis of a type IIn supernova SN 1995N observed with the Chandra X-ray observatory on 2004 March 27. We compare the spectrum obtained from our Chandra observation with that of the previous observation with ASCA in 1998. We find the presence of Neon lines in the Chandra spectrum that were not reported in the ASCA observation. We see no evidence of Iron in both epochs. The observed absorption column depth indicates an extra component over and above the galactic absorption component and is possibly due to a cool dense shell between the reverse-shock and the contact discontinuity in the ejecta. The ASCA and the ROSAT observations suggested a non-linear behavior of the X-ray light curve. However, with the higher spatial resolution and sensitivity of Chandra, we separate out many nearby sources in the supernova field-of-view that had additionally contributed to the supernova flux due to the large Point Spread Function of the ASCA. Taking out the contribution of those nearby sources, we find that the light curves are consistent with a linear decline profile. We consider the light curve in the high energy band separately. We discuss our results in the context of models of nucleosynthesis and the interaction of the shock waves with the circumstellar medium in core collapse supernovae.Comment: 35 pages, 12 figures, accepted for publication in Astrophysical Journa

    Globular Clusters as Testbeds for Type Ia Supernovae

    Full text link
    Fundamental mysteries remain regarding the physics of Type Ia supernovae (SNIa) and their stellar progenitors. We argue here that important clues to these questions may emerge by the identification of those SNIa that occur in extragalactic globular clusters--stellar systems with well defined ages and metallicities. We estimate an all-sky rate of approximately 0.1 eta (D/100 Mpc)^3 per year for SNIa in globular clusters within a distance D, where eta is the rate enhancement per unit mass as a result of dynamical production channels that are inaccessible in the galactic field. If eta is approximately 2-10, as suggested by observations and theory, the combined efforts of accurate supernova astrometry and deep follow-up imaging should identify the > 1% of nearby (D < 100 Mpc) SNIa that occur in globular clusters.Comment: 9 pages, ApJL, in pres

    The long-time dynamics of two hydrodynamically-coupled swimming cells

    Get PDF
    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system - of dimension two - describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of tt\to\infty, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations
    corecore