1,051 research outputs found
Editorial: Cytomegalovirus Pathogenesis and Host Interactions.
Funding Information: MN and EP are funded by the Medical Research Council (MR/ P022146/1 and MR/S00081X/1, respectively).Publisher PDFPeer reviewe
A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation \ud
A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edges of the magnetic substances Fe, Co, and Ni for the benefit of magnetic circular dichroism spectroscopy employing circularly polarized synchrotron radiatio
Projecting a High-School Quarterback’s Performance at the Collegiate Level: A Comparison of the Rivals, 247 Sports, and ESPN Recruiting Ratings
We examine recruiting ratings for high-school quarterbacks over the period 2006-2012 from Rivals, 247 Sports, and ESPN. Using Lee & Preacher’s (2013) test of the difference between two dependent correlations with one variable in common and ordinary least squares regression, we determine that the Rivals ratings have the strongest correlation with quarterback performance over the time-period examined. The 247 Sports ratings follow closely behind the Rivals ratings; however, the ESPN ratings correlate more weakly with a quarterback’s career performance in college
Observation of strongly entangled photon pairs from a nanowire quantum dot
A bright photon source that combines high-fidelity entanglement, on-demand
generation, high extraction efficiency, directional and coherent emission, as
well as position control at the nanoscale is required for implementing
ambitious schemes in quantum information processing, such as that of a quantum
repeater. Still, all of these properties have not yet been achieved in a single
device. Semiconductor quantum dots embedded in nanowire waveguides potentially
satisfy all of these requirements; however, although theoretically predicted,
entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we
demonstrate a bright and coherent source of strongly entangled photon pairs
from a position controlled nanowire quantum dot with a fidelity as high as
0.859 +/- 0.006 and concurrence of 0.80 +/- 0.02. The two-photon quantum state
is modified via the nanowire shape. Our new nanoscale entangled photon source
can be integrated at desired positions in a quantum photonic circuit, single
electron devices and light emitting diodes.Comment: Article and Supplementary Information with open access published at:
http://www.nature.com/ncomms/2014/141031/ncomms6298/full/ncomms6298.htm
Characterization of Polar Stratospheric Clouds With Spaceborne Lidar: CALIPSO and the 2006 Antarctic Season
The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously unavailable. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIPSO data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with virtual solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIPSO data. The observed area covered with PSCs is significantly smaller than would be inferred from a temperature-based proxy such as TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIPSO measurements for investigating PSC microphysics is illustrated using combinations of lidar backscatter coefficient and volume depolarization to infer composition for two CALIPSO PSC scenes
Heterogeneous processes: Laboratory, field, and modeling studies
The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing
Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters
(Abridged) Theoretical models that include only gravitationally-driven
processes fail to match the observed mean X-ray properties of clusters. As a
result, there has recently been increased interest in models in which either
radiative cooling or entropy injection play a central role in mediating the
properties of the intracluster medium. Both sets of models give reasonable fits
to the mean properties of clusters, but cooling only models result in fractions
of cold baryons in excess of observationally established limits and the
simplest entropy injection models do not treat the "cooling core" structure
present in many clusters and cannot account for entropy profiles revealed by
recent X-ray observations. We consider models that marry radiative cooling with
entropy injection, and confront model predictions for the global and structural
properties of massive clusters with the latest X-ray data. The models
successfully and simultaneously reproduce the observed L-T and L-M relations,
yield detailed entropy, surface brightness, and temperature profiles in
excellent agreement with observations, and predict a cooled gas fraction that
is consistent with observational constraints. The model also provides a
possible explanation for the significant intrinsic scatter present in the L-T
and L-M relations and provides a natural way of distinguishing between clusters
classically identified as "cooling flow" clusters and dynamically relaxed
"non-cooling flow" clusters. The former correspond to systems that had only
mild levels (< 300 keV cm^2) of entropy injection, while the latter are
identified as systems that had much higher entropy injection. This is borne out
by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical
Journa
Minimax Current Density Coil Design
'Coil design' is an inverse problem in which arrangements of wire are
designed to generate a prescribed magnetic field when energized with electric
current. The design of gradient and shim coils for magnetic resonance imaging
(MRI) are important examples of coil design. The magnetic fields that these
coils generate are usually required to be both strong and accurate. Other
electromagnetic properties of the coils, such as inductance, may be considered
in the design process, which becomes an optimization problem. The maximum
current density is additionally optimized in this work and the resultant coils
are investigated for performance and practicality. Coils with minimax current
density were found to exhibit maximally spread wires and may help disperse
localized regions of Joule heating. They also produce the highest possible
magnetic field strength per unit current for any given surface and wire size.
Three different flavours of boundary element method that employ different basis
functions (triangular elements with uniform current, cylindrical elements with
sinusoidal current and conic section elements with sinusoidal-uniform current)
were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D:
Applied Physic
Recommended from our members
Fitness factors impacting survival of a subsurface bacterium in contaminated groundwater
Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation (ORR) isolate, Pantoea sp. MT58 (MT58). Survival fitness experiments in which a randomly barcoded transposon insertion (RB-TnSeq) library of MT58 was exposed directly to contaminated ORR groundwater samples from across a nitrate and mixed metal contamination plume were used to identify genes important for survival with increasing exposure times and concentrations of contaminants, and availability of a carbon source. Genes involved in controlling and using carbon, encoding transcriptional regulators, and related to Gram-negative outer membrane processes were among those found to be important for survival in contaminated ORR groundwater. A comparative genomics analysis of 75 Pantoea genus strains allowed us to further separate the survival determinants into core and non-core genes in the Pantoea pangenome, revealing insights into the survival of subsurface microorganisms during contaminant plume intrusion
- …