238 research outputs found

    Super-resolution imaging of a low frequency levitated oscillator

    Get PDF
    We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 106^{6} with a displacement sensitivity better than 10−16 m2^{-16}\,m^{2}/Hz. This method can be used to extract trap parameters as well as the properties of the levitated particles. We demonstrate continuous monitoring of the particle dynamics on timescales of the order of weeks. We show that by using the improvement given by super-resolution imaging, a significant reduction in the noise floor can be attained, with an increase in the bandwidth of the force sensitivity. This approach represents a competitive alternative to standard optical detection for a range of low frequency oscillators where low optical powers are require

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics

    Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system

    Full text link
    Measuring a weak force is an important task for micro-mechanical systems, both when using devices as sensitive detectors and, particularly, in experiments of quantum mechanics. The optimal strategy for resolving a weak stochastic signal force on a huge background (typically given by thermal noise) is a crucial and debated topic, and the stability of the mechanical resonance is a further, related critical issue. We introduce and analyze the parametric control of the optical spring, that allows to stabilize the resonance and provides a phase reference for the oscillator motion, yet conserving a free evolution in one quadrature of the phase space. We also study quantitatively the characteristics of our micro opto-mechanical system as detector of stochastic force for short measurement times (for quick, high resolution monitoring) as well as for the longer term observations that optimize the sensitivity. We compare a simple, naive strategy based on the evaluation of the variance of the displacement (that is a widely used technique) with an optimal Wiener-Kolmogorov data analysis. We show that, thanks to the parametric stabilization of the effective susceptibility, we can more efficiently implement Wiener filtering, and we investigate how this strategy improves the performance of our system. We finally demonstrate the possibility to resolve stochastic force variations well below 1% of the thermal noise

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    An ultra-low dissipation micro-oscillator for quantum opto-mechanics

    Full text link
    Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio

    Cavity optomechanics in a fiber cavity: the role of stimulated Brillouin scattering

    Get PDF
    We study the role of stimulated Brillouin scattering in a fiber cavity by numerical simulations and a simple theoretical model and find good agreement between experiment, simulation and theory. We also investigate an optomechanical system based on a fiber cavity in the presence on the nonlinear Brillouin scattering. Using simulation and theory, we show that this hybrid optomechanical system increases optomechanical damping for low mechanical resonance frequencies in the unresolved sideband regime. Furthermore, optimal damping occurs for blue detuning in stark contrast to standard optomechanics. We investigate whether this hybrid optomechanical system is capable cooling a mechanical oscillator to the quantum ground state

    Proton acceleration at tearing coronal null-point current sheets

    Get PDF
    Context. Non-thermal particle acceleration in the solar corona is thought to constitute a substantial part of the energy budget of explosive events such as solar flares. One well-established mechanism of non-thermal acceleration is directly via fields in current sheets. Aims. In this paper we study proton acceleration during "spine-fan reconnection" at a 3D magnetic null point. This type of reconnection has recently been implicated in some flares known as circular-ribbon flares. It has also recently been discovered that the reconnecting current sheet may undergo a non-linear tearing-type instability. This tearing leads to the formation of flux ropes and quasi-turbulent dynamics. Methods. A predictor-corrector test particle code is used to model the trajectories of protons at different stages of sheet tearing: when the sheet is intact, just after the formation of the first major flux rope, and once the non-linear phase of the instability has become more fully developed. The fields for these proton trajectories were taken from snapshots of a 3D magnetohydrodynamics simulation treated as three static field geometries represented by interpolated grids. Acceleration in the intact current sheet is compared to earlier simulations of infinite static current sheets and then used as a control case with which to compare the later snapshots. Results. Protons are found to be predominantly accelerated along the fan surface, especially in the absence of current sheet tearing. Most of the highest energy protons are accelerated in the main body of the current sheet, along the direction of strongest parallel electric field. A high energy tail is present in the kinetic energy distribution. After tearing commences, this direct acceleration no longer dominates and acceleration in the outflow regions makes a proportionally greater contribution. Sheet tearing appears overall to hinder the acceleration of protons in the fan plane, at least in the absence of time-dependent acceleration mechanisms. Some correlation is found between high energy protons and locations of flux ropes formed by the instability, but the nature of the link remains at present unclear.</p

    Frequency noise cancellation in optomechanical systems for ponderomotive squeezing

    Full text link
    Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure

    Sympathetic cooling and squeezing of two co-levitated nanoparticles

    Full text link
    Levitated particles are an ideal tool for measuring weak forces and investigating quantum mechanics in macroscopic objects. Arrays of two or more of these particles have been suggested for improving force sensitivity and entangling macropscopic objects. In this article, two charged, silica nanoparticles, that are coupled through their mutual Coulomb repulsion, are trapped in a Paul trap, and the individual masses and charges of both particles are characterised. We demonstrate sympathetic cooling of one nanoparticle coupled via the Coulomb interaction to the second nanoparticle to which feedback cooling is directly applied. We also implement sympathetic squeezing through a similar process showing non-thermal motional states can be transferred by the Coulomb interaction. This work establishes protocols to cool and manipulate arrays of nanoparticles for sensing and minimising the effect of optical heating in future experiments.Comment: 8 pages, 4 figure
    • …
    corecore