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Cavity optomechanics in a fiber cavity: the role of stimulated Brillouin scattering

A. Beregi
Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

A. Pontin and P. F. Barker∗

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

We study the role of stimulated Brillouin scattering in a fiber cavity by numerical simulations and a
simple theoretical model and find good agreement between experiment, simulation and theory. We
also investigate an optomechanical system based on a fiber cavity in the presence of the nonlinear
Brillouin scattering. Using simulation and theory, we show that this hybrid optomechanical system
increases optomechanical damping for low mechanical resonance frequencies in the unresolved side-
band regime. Furthermore, optimal damping occurs for blue detuning in stark contrast to standard
optomechanics. We investigate whether this hybrid optomechanical system is capable of cooling a
mechanical oscillator to the quantum ground state.

I. INTRODUCTION

Cavity optomechanics explores the interaction between
electromagnetic radiation in an optical cavity and a me-
chanical oscillator. The tremendous technological ad-
vancements over the last few decades have allowed the
field to make an impact in both applications and founda-
tional physics. Nowadays, many aspects of the quan-
tum nature of the light-matter interaction have been
observed, among these, ground state cooling [1], pon-
deromotive light squeezing [2, 3], and quantum non-
demolition measurements of field fluctuations [4]. More
recently, levitation of nano- and micro-particles has been
gaining more attention, since this platform has entered
the quantum regime as well [5, 6], furthermore, levita-
tion is considered one of the best candidates to study the
quantum to classical transition and collapse models [7, 8].

Levitated optomechanical sensors offer ultrasensitive
detection down to single molecule and single spin de-
tection [9, 10], with application in acceleration sensing
and gravimetry [11, 12] and detection of weak forces [13–
16]. A particularly intriguing application considers a
100 m long low finesse levitated optomechanical cavity for
the detection of high-frequency gravitational waves [17]
which could offer a strain sensitivity surpassing that of
LIGO [18] and VIRGO [19] in the 100 kHz frequency
band. Later, it has been shown that a similar optome-
chanical experiment where the long free space cavity is
substituted by an extrinsic fiber Fabry-Perot cavity can
allow motional ground state cooling of a levitated mi-
crodisk, provided that nonlinear processes introduced by
the fiber do not play a significant role [20]. Among these,
thermooptic noise, stimulated Brillouin scattering (SBS)
and stimulated Raman scattering (SRS) [21].

In this paper, we investigate the effects of SBS in a
fiber cavity optomechanical setup and show that in spe-
cific circumstances, one can exploit SBS to increase the
optomechanical cooling rate. This system is a hybrid

∗ p.barker@ucl.ac.uk

optomechanical system, since the optical cavity mode is
coupled to the mechanical mode of the oscillator as well
as to mechanical modes (lattice vibrations) in the opti-
cal fiber. Various hybrid optomechanical systems have
already been studied. For example, it has been shown
that if the cavity contained two-level systems, enhanced
cooling of the mechanical oscillator can be achieved [22]
and that bi- and tripartite entanglement can be cre-
ated [23]. A similar enhancement has been shown also
when the two-level systems are embedded in the me-
chanical oscillator [24]. Furthermore, a cavity with an
externally pumped gain medium as a two-level system
was explored and it was shown that seeding this cavity
externally results in cooling its own mirrors [25]. The
system we consider here is fundamentally different from
the two-level systems previously considered in optome-
chanics both from the microscopic point of view and the
mechanisms of depletion. If two-level systems are be-
tween the cavity mirrors, the two relevant processes are
absorption and stimulated emission of photons, both re-
sulting in a change in photon number. In the case of
SBS, a pump photon is absorbed while a phonon and
a Stokes photon are emitted in the opposite direction
of the pump photon propagation, conserving the photon
number. Also, in the pumped gain medium case, the ef-
fects depend on the number of two-level systems in the
excited state and, if the pump is sufficiently strong, the
number of photons grow exponentially with propagation
distance in the gain medium. In the case of an opti-
cally active medium, the depletion mechanism is the high
number of photons in the cavity (at a constant pumping
rate) as opposed to the low number of pump photons in
the case of SBS. Lastly, if two-level systems are present
between the cavity mirrors, the detuning between cav-
ity and atomic resonance plays an important role, while
stimulated Brillouin scattering depends on pump fre-
quency weakly (non-resonantly). The hybrid fiber cavity
optomechanical system considered here is capable of en-
hancing the optomechanical cooling in low-finesse, nearly
sideband-resolved systems in general. This effect is more
robust, allowing a wider range of experimental parame-
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ters in contrast with the two-level systems between the
cavity mirrors, where cooling depends strongly on atom-
cavity and pump-atom detunings.

This paper is structured as follows. In Section II we
present a set of coupled differential equations that de-
scribe the evolution of the optical fields in a fiber cavity,
which we solve numerically later. Moreover, we present
a set of equations of motion using the formalism of quan-
tum optics, which can be solved analytically when lin-
earised around a steady-state solution. In Section III
we compare the predictions of the simulation and the
linearised theory with experimental observations. We
explore the possibility of increasing the optomechanical
damping rate in Section IV and investigate the effects of
various parameters. Finally, in Section V we investigate
whether the increased damping rate results in ground
state cooling.

II. THEORY, SIMULATION

Differential equations describing the evolution of fields
in a fiber cavity with nonlinear effects were derived by
Ogusu [26]. These equations consider SBS with up to
second order Stokes fields and first order anti-Stokes
fields, self-phase modulation (SPM), cross-phase modu-
lation (XPM) and four-wave mixing (FWM). Including
all these effects in the theoretical model leads to com-
plicated nonlinear differential equations. In our model,
however, we put emphasis on SBS with first-order Stokes
fields only. The results in Ref. [26] demonstrate that sec-
ond order Stokes and first-order anti-Stokes scattering
has a significantly higher threshold power than first-order
Stokes scattering. In this work, we consider input powers
which are slightly above the Brillouin threshold. Since
SBS conserves photon number, the steady-state number
of Stokes photons is the difference between the number
of pump photons in absence of SBS and the number of
photons at the Brillouin threshold. In our case, this is
at most ten percent, which means that higher order pro-
cesses are strongly suppressed. This approximation also
means that we can neglect FWM, since the terms describ-
ing these in the differential equations are proportional to
either the anti-Stokes or second order Stokes amplitudes.
Moreover, phase modulation effects can be neglected as
the phase shift per unit optical power is approximately
0.1 rad/W while the typical optical powers considered
here are in the 30− 80/ mW range. Therefore, the equa-
tions we simulate are

∂E+
p

∂z
= −α

2
E+
p − cB |E−S |

2E+
p (1)

∂E−p
∂z

= +
α

2
E−p + cB |E+

S |
2E−p (2)

∂E+
S

∂z
= −α

2
E+
S + cB |E−p |2E+

S (3)

∂E−S
∂z

= +
α

2
E−S − cB |E

+
p |2E−S (4)

where E
+(−)
p and E

+(−)
S are the forward (backward)

propagating pump and Stokes fields, z is the spatial co-
ordinate along the optical fiber, α is the fiber attenuation
coefficient and cB = ngB

η0
is a coefficient proportional to

gB , the Brillouin gain, with n being the index of refrac-
tion and η0 being the impedance of free space. In gen-
eral, gB is a function of frequency, however the Brillouin
gain spectrum is typically a peak function displaced from
the pump frequency by 10 GHz, while having a linewidth
of 10 MHz. However, the optical cavity acts as a fil-
ter and only a narrow bandwidth, given by the cavity
linewidth, is relevant in the Brillouin gain spectrum. In
this work, we consider cavities which have a free spectral
range comparable or larger than the Brillouin gain band-
width, therefore only a single Stokes mode is present in
the cavity. This gives a cavity linewidth which is smaller
than the Brillouin gain bandwidth. Furthermore, we as-
sume that the Stokes mode is resonant with the optical
cavity and we take the Brillouin gain to be the peak gain.
In experiments this could be ensured by temperature con-
trolling the optical fiber since the central frequency of the
Brillouin gain spectrum shifts of the order of 1 MHz per
Kelvin [27]. The simulation method and parameters are
described in Section III and the details of the discretisa-
tion scheme are found in Appendix A.

Eqs. 1-4 only describe SBS and have no source term for
the Stokes fields which would correspond to spontaneous
Brillouin scattering. It is possible to add a stochastic
term to these equations, however this method has several
disadvantages. Firstly, including spontaneous scattering
would increase the computational complexity of the prob-
lem as it would make the equations inhomogeneous. For
an accurate calculation, one has to calculate the different
mechanical modes of the optical fiber and calculate the
phonon occupation numbers in thermal equilibrium [28].
One could use a simpler, but still stochastic model known
as the distributed fluctuating source model [29], however,
its qualitative predictions are similar to the simpler, lo-
calised nonfluctuating source model. In this case, SBS is
initiated by injecting a very weak Stokes field at the end
of the fiber with a random phase. The amplitude of the
injected Stokes field is not significant, as long as it is neg-
ligible compared to the equilibrium value of the Stokes
field. In this case, the injected field is only responsible
for initiation of SBS and will not influence the interplay
between the pump and Stokes fields significantly. Fol-
lowing the earlier argument on the insignificance of the
Stokes frequency and its detuning from cavity resonance,
instead of using a random phase, we inject a weak Stokes
field that does not interfere with field circulating the cav-
ity, which is the case on average if a field with random
phase is injected.

The set of nonlinear equations presented before model
SBS only. The interaction between the optical fields and
the mechanical oscillator can be described with a simple
theoretical model using the typical formalism of cavity
optomechanics where we explicitly include the dynami-
cal equation for the mechanical oscillator. Furthermore,
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we include the thermoptic phase noise in the pump field
equation of motion following [20]. Based on Eq. 1-4, the
equations of motion for the intracavity pump field am-
plitude a in the frame rotating with the laser frequency,
and the Stokes field intensity |b|2= B are given by

ȧ = −(κ+ i(∆ + φ̇) + iGx)a+
√

2κexain − GB

2 Ba(5)

Ḃ = −2κB +GB |a|2B (6)

where κ is the half-linewidth of the cavity, ∆ is the cavity
detuning, φ̇ is the frequency noise with properties out-
lined in Appendix B, G is the cavity resonant frequency
shift per displacement, x is the mechanical displacement
around equilibrium, κex is the loss rate due to the input
mirror, ain is the amplitude of the coherent drive and
GB is a constant proportional to the Brillouin gain and
can be derived by considering the different normalisations
of E and a as shown in Appendix C. These equations
are based on the input-output theory of an optical cav-
ity [30]. The coupling terms between the pump and the
Stokes fields were added heuristically based on Eq. 1-4.
An advantage of this formalism is that the equations of
motion can be linearised around a steady state solution
and these are analytically solvable. However, this model
neglects any spatial variation of the fields since each are
described by a single complex amplitude. Moreover, this
model considers a single cavity mode only in contrast
with the spatial model which considers all modes. For
a high Finesse cavity this is a very good approximation
but in our case this introduces a small error. There is
no stochastic source in Eq. 6 as we assume that above
the Brillouin threshold, the Stokes field always builds up
from noise and stimulated scattering will be dominant
over spontaneous scattering once equilibrium is reached.
We separate both the pump field and the Stokes intensity
to a mean value (ā, B̄) and a fluctuating term (δa, δB).
Neglecting the small mechanical displacement and solv-
ing the steady-state equations above Brillouin threshold
yields

ā =
√

2κexain

κ−i∆+
GB
2 B̄

(7)

B̄ = 2
GB

(√
GBa2inκex

κ −∆2 − κ
)
. (8)

Since B̄ is real and positive, Eq. 8 is only valid if√
GBa2inκex

κ −∆2 > κ and if
GBa

2
inκex

κ > ∆2, which in-

dicates the threshold behaviour of Brillouin scattering.
An interesting feature of Eqs. 7 and 8 is that above the
Brillouin threshold, the steady-state pump intensity has
a constant value of |a|2= 2κ/GB . From the threshold
condition, setting the detuning to zero and considering
that GB ∝ κ (see Appendix C) it follows that threshold
power scales with linewidth as κ−2. Ignoring fiber losses
and keeping the reflectivity of cavity mirrors constant,
this means that the threshold power scales as L−2 with

cavity length as opposed to the L−1 scaling for single
pass in a fiber. The equations of motion for the fluctua-
tions and for the mechanical displacement are linearised
by neglecting any quadratic or higher order terms in fluc-
tuations. We obtain

d(δa)

dt
= −(κ− i(∆ + φ̇)− GBB̄

2 )δa+ iGāx− GB ā
2 δB(9)

d(δB)

dt
= (−2κ+GB |ā|2)δB +GBB̄(ā∗δa+ āδa∗)(10)

d2x

dt2
= −Ω2

mx− Γmẋ+ h̄G
m (ā∗δa+ āδa∗ + δB) + Fex

m(11)

where Fex is the sum of all external forces. After Fourier
transforming these equations and some algebra, we find
an analytic expression for the optomechanical contribu-
tion to the inverse mechanical susceptibility, which is
given in Appendix D with derivation.

III. SIMULATION RESULTS VS.
EXPERIMENT

To verify the model used in the simulations and the
theoretical model, we compare the numerical calculations
with the cavity finesse measured as a function of input
power in our experiment. Here, we focus on the optical
aspect of the system only (i.e., no mechanical oscilla-
tor). The schematic of the simulated and experimental
setup can be seen in Figure 1. The cavity consists of a
standard silica input mirror of reflectivity 0.85 and a sin-
gle mode polarisation maintaining optical fiber of length
10 m with a fiber Bragg-grating on one end. The fiber
Bragg-grating has a 3dB bandwidth of 260 GHz there-
fore it is a good reflector of the Stokes field. Between the
mirror and the fiber, we use a fixed focus aspheric lens
collimator to couple the beam into the fiber. The cavity
is driven by a 1064 nm laser. A non-polarising beamsplit-
ter is used to collect a fraction of the light reflected from
the cavity on a photodetector.

We measure the spectrum of the cavity by modulating
the frequency of the laser with a ramp signal scanning 2−
3 free spectral ranges. The simulated finesse is obtained
as follows. We consider a fiber cavity with a free space
region between the input mirror and fiber input of length
of Lfree = 0.1 m and a fiber of length Lfib = LfreeN/n =
10.003 m, where N = 145 is the number of finite elements
of the fiber using an index of refraction of n = 1.4496 [31].
An input mirror of reflectivity R1 = 0.85 and an output
mirror of reflectivity R2 = 1 was used. These parameters
are based on the experimental setup. The summary of
the parameters and quantities derived from them can be
seen in Table I.

Eqs 1-4 are solved numerically until the cavity reaches
equilibrium at a fixed laser detuning far away from cav-
ity resonance. The frequency of the input field is then
swept through one free spectral range at the same rate
as in the experiment. The optical power in reflection was
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FIG. 1. a): Schematic of the simulated cavity containing a
free space volume of length δz and a fiber which is split up
in regions of length δz/n. Forward (backward) propagating
pump and Stokes fields are defined at the beginning (end) of
each element. b): Schematic of the experiment to measure
the finesse of the cavity. The frequency of a 1064 nm laser
is scanned by applying a ramp signal. The optical power
reflected from the cavity is measured with a photodiode and
the Finesse is obtained by fitting the measured signal with
the Airy-distribution in reflection.

Parameter Value Description
Lfree 0.1 m Free space length of cavity
Lfiber 10.003 m Fiber length of cavity
N 145 Number of finite elements of fiber
n 1.4496 Refractive index of fiber
R1 0.85 Reflectivity of input mirror
R2 1 Reflectivity of second mirror

∆ωFSR/2π 10.278 MHz Free spectral range
κL/2π 436.8 kHz Lorentzian half-linewidth of cavity
FL 11.76 Lorentzian finesse of cavity

κA/2π 430.8 kHz Airy half-linewidth of cavity
FA 11.93 Airy finesse of cavity

TABLE I. Parameters of the cavity used in the simulation.

recorded during the sweep and the data was filtered in
frequency domain with a low pass filter to account for
the finite bandwidth of the photodetector used in the ex-
periment. The filtered time-domain data is fitted with
the Airy-distribution in reflection [32] allowing to esti-
mate the reflectivity of the back mirror plus the overall
optical losses due to absorption in the fiber and mode-
matching losses at the fiber-free space interface. The
Airy finesse of the cavity is calculated from this effec-
tive reflectance and compared to the experimental Airy
finesse data. Since the Brillouin gain coefficient and the
fiber loss coefficient are not known to a high precision,
these are free parameters in matching the simulated data
to the experimental ones. Furthermore, a change in the
fiber loss coefficient changes the cavity finesse under the
Brillouin threshold, which is a known constant. The only
free parameter to be varied is the mode matching loss
coefficient at the fiber-free space interface, denoted by β
such that β is the ratio of the optical powers after and

before the fiber-free space interface. The simulated data
is optimised by varying these three parameters using the
L-BFGS-B algorithm [33] with the error function being
the sum of the squared residuals. The initial guess for the
parameters based on coarse manual optimisation and the
parameters of the fiber used are gB = 1.13×10−11 m/W,
α = 5.62 × 10−4 m−1 and β = 0.7. To ensure that the
optimisation results are meaningful, we set a factor of
2 relative bound on the Brillouin gain and ±25 percent
relative bound on the fiber and mode-matching losses.

The result of the optimisation can be seen in Figure 2
a) showing a good agreement between simulation, experi-
ment and theory. To make sure that the finesse under the
Brillouin threshold for the theory matches the experimen-
tally measured value, for this specific result, we extended
the theory presented in the previous section to include
two more cavity modes. Furthermore, we used the three
mode theory under the Brillouin threshold to get accu-
rate values for κ and κex, found in Table II. The values of
these parameters are only well defined in terms of other
known constants in the high finesse approximation and
there is only a good match between theory and simula-
tion above Brillouin threshold if the accurate values are
used. The Brillouin gain coefficient obtained after opti-
misation is 1.67×10−11 m/W. Nikles et al. [27] measured
the Brillouin gain spectrum of optical fibers with differ-
ent GeO2 doping levels and obtained peak Brillouin gains
varying between 1.63× 10−11 m/W and 5× 10−11 m/W.
After correcting for the different wavelengths of light used
(gB ∝ λ−4

p , where λp is the wavelength of the pumping

light) we obtain values between 6.8 × 10−12 m/W and
2.1 × 10−11 m/W, demonstrating a good agreement be-
tween simulation and experiment. Furthermore, the op-
timal fiber loss coefficient was 12% higher than the ex-
pected value measured by the manufacturer at 1060 nm
and the mode matching loss coefficient was 4.3% lower
than the initial guess. A summary of the optimisation
results can be found in Table III. Therefore, we can
conclude that the simulation was able to reproduce the
experimental results with the parameters in agreement
with literature or with reasonable differences from the
initial estimated values, which can be attributed to mea-
surement uncertainties and measuring fiber parameters
at a different wavelength.

For the simulations in the next sections, we used the
parameters listed in Table II. These are a result of an ini-
tial manual optimisation for the simulated finesse vs in-
put power results to match the experimental data. Since
these parameters are close to the optimisation result, the
simulation parameters give qualitatively similar results.
The purpose of this paper is to explore the optomechan-
ical effects in a fiber cavity and not to perform precise
measurements on the fiber parameters.

The experiment demonstrated a dynamic phenomenon
when the Brillouin threshold is crossed. When the in-
tracavity power is just above the Brillouin threshold, it
takes a long time for the cavity to reach equilibrium as
the exponent in the solution of Eqs. 1-4 (ignoring pump
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Parameter Value Description
gB 1.13× 10−11 m/W Brillouin gain
α 5.62× 10−4 m−1 fiber loss coefficient
β 0.70 Mode-matching loss

κ/2π 432.9 kHz Half-linewidth
κex/2π 111.8 kHz Input mirror decay rate

TABLE II. Parameters used in the simulation and theoretical
calculations.

Parameter Value Description
gB 1.67× 10−11 m/W Brillouin gain
α 6.31× 10−4 m−1 fiber loss coefficient
β 0.67 Mode-matching loss

TABLE III. Results of the optimisation for the fiber parame-
ters

depletion effects) is small. This effect is shown in Fig-
ure 2 c) as a ripple on the cavity response when the cav-
ity is in a transient regime between a state without SBS
to a state with SBS. The same phenomenon is present in
the simulation results and agrees well qualitatively with
the experimental data.

A second simulation used a different approach to
obtain the spectrum of the cavity. Instead of sweeping
the frequency of the laser, which is experimentally the
easiest way to perform the measurement, the reflected
intensity was recorded in equilibrium for different
detunings, always starting from an empty cavity. This
allows to observe the true equilibrium response of the
fiber cavity. The results in Figure 2 b) show that the
equilibrium response of the fiber cavity changes above
the Brillouin threshold. If the detuning is large enough
such that the intracavity power is under the Brillouin
threshold, there is no difference between a normal and
a fiber cavity and the cavity spectrum is identical to
the Airy-distribution as expected. However, once the
detuning is small enough to induce SBS, the intracav-
ity pump power is reduced, while the Stokes power
is increased. Since SBS is initiated by spontaneous
scattering with a random phase, the Stokes and pump
fields simply add up on average and the optical power
reflected from the cavity is increased. The resonance
lines obtained are therefore effectively broader than
the original lines (as well as being different from the
Airy-distribution). Therefore, the method used above
to extract the finesse in the simulation and experiment
is only valid and meaningful for weak Brillouin scat-
tering, where the line shapes are not altered significantly.

IV. BRILLOUIN SCATTERING ENHANCED
COOLING

Brillouin processes in optical fibers have being studied
for a long time, and have nowadays many technologi-

FIG. 2. a): Experimental finesse vs input power, with simula-
tion results optimised over the Brillouin gain, fiber loss coeffi-
cient and mode-matching loss coefficient. b): Simulated equi-
librium cavity spectrum in reflection under Brillouin thresh-
old (30 mW input power) and above Brillouin threshold for
45 mW, 60 mW and 75 mW input powers. c): Dynamic cross-
ing of Brillouin threshold observed as the non-equilibrium
cavity spectrum in reflection. The small discrepancy in the
experimental curve around 0.4 ms is the effect of the small
birefringence of the cavity.

cal applications, from all-fiber Brillouin lasers [34, 35] to
fiber Brillouin amplifiers [36, 37]. However, in the con-
text of cavity optomechanics, Brillouin processes have
only been explored in the direct case, i.e., when the me-
chanical mode emerges directly from confined Brillouin
scattering. This is the typical case for whispering gallery
optomechanical systems [38] and for nanophotonic struc-
tures in general [39]. Here, we propose and demonstrate
that under certain conditions SBS in a fiber cavity adds
an extra modulation to the intracavity pump intensity,
reducing the optical spring effect and increasing the op-
tomechanical cooling rate. Contrary to what previously
explored, acoustic phonons constitute a silent partner in
the optomechanical interaction.

To simulate this effect with the coupled amplitude
equations (Eqs. 1-4), we consider a fiber cavity with pa-
rameters found in Table I. We also compare the results
with the linearised theory with parameters found in Ta-
ble II. For the initial search for the optimal parame-
ters, the mechanical motion of the mirror is not sim-
ulated, it is explicitly given as a function of time as
a pure sinusoidal oscillation with a thermal amplitude
∆xRMS = (kBT/mΩ2

m)
1
2 with the temperature of the

bath being T = 300 K and the mass of the harmonic
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oscillator being m = 10−10 kg, which is typical for high
quality factor silicon-nitride membranes [40]. This ap-
proximation is valid if the mechanical quality factor of
the oscillator is high, which is typical and favourable in
experiments to achieve low effective temperatures. After
the cavity has been brought to equilibrium (not consid-
ering the small periodic fluctuations due to mechanical
motion), the radiation pressure force on the input mirror
is recorded. The force is not completely in phase with
the mechanical motion due to the characteristic response
time of the cavity. Therefore it is demodulated in phase
and in quadrature with mechanical motion yielding the
optomechanical cooling rate and mechanical resonance
frequency shift. A fine sweep over detuning is performed
(typically 400 points in a range of 2 MHz) as well as a
coarse sweep over input power (from 10 mW to 300 mW
in steps of 10 mW). For comparison, the simulation is also
executed without Brillouin scattering by setting the Bril-
louin gain to zero. Throughout this section, we consider
the main results to be the outcome of the numerical sim-
ulation of the coupled amplitude equations with explicit
mechanical motion, and compare them to the predictions
of the linearised theory. The coupled amplitude equa-
tions include nonlinear phenomena as well as spatial de-
pendence of the fields and comparison with theory serves
as a benchmark of our theoretical model. Moreover, we
compare a single simulation result with explicit mechani-
cal motion to a more detailed, computationally expensive
simulation, which treats the stochastic mechanical oscil-
lator dynamically.

The results of the simulation showed that the system
exhibits three different qualitative behaviours depending
on the input parameters. The first, trivial case, occurs
when the intracavity power at zero detuning is under
the Brillouin threshold, in this case there is no difference
between a cavity with and without SBS. If the peak in-
tracavity power is above the Brillouin threshold, and the
frequency of the mechanical oscillator is high compared
to the time scales of fluctuations of the Stokes intensity,
one can see a destructive effect due to Brillouin scatter-
ing both for the optical spring effect and optomechanical
cooling as seen in Figure 2 a) where we considered a me-
chanical resonance frequency of Ωm/2π = 300 kHz. For
such mechanical resonance frequencies, the dynamics of
Brillouin scattering is too slow, hence the force oscillating
at the mechanical resonance frequency is reduced. The
results from the linearised theory are in good agreement
with the simulation for the expected parameters.

For low mechanical resonance frequencies (up to ≈
30 kHz with the parameters in consideration), the me-
chanical motion is slow enough such that for a cer-
tain detunings, the intensity of the Stokes field oscillat-
ing at the mechanical resonance frequency is significant.
As a result, the pump field will be modulated stronger
than usual, which results in a larger optical damping
rate. This effect does not increase the magnitude of the
force acting on the mechanical oscillator because Bril-
louin scattering conserves energy, this was verified by

FIG. 3. Optomechanical effects with and without SBS in-
cluding predictions of linearised theory in a): second regime,
mechanical resonance frequency shift, b): second regime,
optomechanical damping, c): third regime, mechanical res-
onance frequency shift, d): third regime, optomechanical
damping.

calculating the total force and comparing it to the no
SBS case. However, it is capable of introducing a phase
shift, decreasing the optical spring effect and increasing
optomechanical cooling. This can be seen in Figure 2
c) and d) where the mechanical resonance frequency is
Ωm/2π = 6.1 kHz. As the Brillouin threshold is reached,
the optomechanical cooling rate Γopt increases sharply
for blue detuning, while the optical spring effect reduces.
The results from the linearized theory are in very good
agreement with the simulation results within the accu-
racy of the approximations used.

FIG. 4. Optomechanical damping rate due to pump and
Stokes fields can be separated since the oscillator will not
respond to the ≈GHz beatnote. The sharp increase/decrease
in the total damping rate is due to the modulation of the
pump field by the Stokes field.

The origin of the sharp heating peak on the red de-
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tuned side can be explained intuitively as follows. In a
normal optomechanical system where the drive is red-
detuned, as the mechanical oscillator moves in the posi-
tive direction it brings the cavity more in resonance. This
increases the intracavity power which gives rise to the
usual optical spring and damping effects. If we include
Brillouin scattering, as the mechanical motion increases
the intracavity power of the pump field, which increases
the rate of SBS and reduces the pump power. This allows
the mechanical oscillator to reach a larger displacement.
The reduced intensity is converted to Stokes intensity,
which acts later on the oscillator due to the finite time
needed for the system to reach equilibrium. A similar ex-
planation holds for the blue detuned side where the effect
is the opposite, giving rise to cooling. Figure 4 justifies
this explanation, showing that the extra cooling or heat-
ing is due to the additional modulation in the pump field
and not due to the Stokes field providing a higher force
in quadrature with mechanical motion To further inves-
tigate the nature of the SBS-induced extra optomechani-
cal damping force, we considered the typical system and
plotted the radiation pressure force as a function of time
at a blue detuning where the optomechanical damping
rate was maximum and a factor of 2 more than the con-
ventional, red-detuned damping rate without SBS. The
Stokes intensity had a non-zero mean value around which
small sinusoidal fluctuations were observed at the me-
chanical resonance frequency. This demonstrates that
the SBS-induced damping is not due to the bistable na-
ture of Eqs. 5-6. Furthermore, we considered the case
presented in Fig. 3 d) where the SBS-assisted cooling
rate shows a very sharp feature. We calculated the RMS
thermal amplitude of the mechanical oscillator and the
corresponding fluctuation of the cavity detuning which is
of the order of 5 kHz giving an optomechanical damping
rate fluctuations of 30 Hz at most. This demonstrates
that it is possible to stay above the Brillouin threshold
and have an increased optomechanical damping rate even
for the set of parameters considered in Fig. 3 which rep-
resents an extreme scenario.

To investigate how the Brillouin scattering enhanced
cooling depends on various parameters, we change the
cavity input power, the mass of the oscillator and the me-
chanical resonance frequency. The results for different in-
put powers can be seen in Figure 5. For this comparison,
we consider the typical system with Ωm/2π = 20 kHz.
By increasing the input power, the detuning correspond-
ing to the Brillouin threshold changes, as well as the
time for the Stokes field to reach equilibrium, hence the
phase shift between mechanical motion and Stokes inten-
sity. Moreover, the modulation amplitude of the Stokes
field depends on the modulation amplitude of the pump
field, which is maximum approximately at a detuning of√

3κ
6 = 2π × 289 kHz considering a Lorentzian response.

These two effects result in an optimal cavity input power
of approximately 46 mW which maximises the optome-
chanical damping rate.

To see the effects of the mass of the oscillator, we con-

FIG. 5. Optomechanical damping rate for various input pow-
ers. As the input power is increased, the Brillouin threshold is
crossed at larger detunings. The maximum optical damping
occurs at approximately the input power where the Brillouin
threshold is crossed at the minimum of the regular optome-
chanical damping rate, because the mechanical motion mod-
ulates the intracavity power the strongest in this case.

sidered the system described in Sec. II, with Ωm/2π =
10 kHz and input power of 60 mW and we find the max-
imum optomechanical damping rate as a function of de-
tuning. The peak optomechanical damping rate due to
Brillouin scattering decays as m−1 for a broad range of
masses just as the linearised theory with and without
Brillouin scattering predicts. For very low masses, the
mechanical amplitude is too large for the linear approx-
imation to be valid. Similarly, when considering the ef-
fect of mechanical resonance frequency, we considered the
system with usual parameters and with input power of
60 mW, and extracted the peak optomechanical damp-
ing rate due to Brillouin scattering. The results (Fig-
ure 6 b).) show that the damping rate is increasing with
decreasing frequency, with a decreasing rate. The previ-
ous result for different masses allows us to correct for the
different mechanical amplitudes at different mechanical
resonance frequencies, giving an optimum around 6 kHz,
where the gradient of the simulated data matches the
gradient of Ω−1

m decay predicted by the linearised the-
ory without Brillouin scattering. The results from the
linearised theory are in good agreement with the simula-
tion.

Even though the previous simulation method was able
to find the region in the parameter space where Brillouin
scattering enhances optomechanical cooling, it neglected
the two-way coupling between the cavity and the me-
chanical motion which affected the cavity field but radi-
ation pressure had no effect on the oscillator. Therefore,
we numerically solved the fully coupled dynamical equa-
tions with no change on the cavity side but with the har-
monic oscillator also driven by a Langevin thermal force
at a bath temperature of 300 K. The equation of motion
was solved with the modified leapfrog method suggested
by Mannella [41] ensuring that the uncertainties in po-

Page 7 of 13 AUTHOR SUBMITTED MANUSCRIPT - NJP-114855.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



8

FIG. 6. Maximum optomechanical damping rate due to Bril-
louin scattering as a function of mass of harmonic oscillator
(a) and as a function of mechanical resonance frequency (b).
The Ω−1

m decay plot is a guide to the eye only.

sition and momentum do not grow over time. Since the
time step of the simulation is set by the discretisation of
space which was chosen to be 0.1 m, the time step was
0.33 ns, which in general yields in a very large number
of simulation steps required, making the simulation com-
putationally expensive. As a consequence, the length of
the fiber was reduced to Lfib = 5 m, the frequency of
the mechanical oscillator was Ωm/2π = 20 kHz and the
quality factor was Q = 5000 giving Γm/2π = 4 Hz. The
simulation was run for t = 0.6 s which is approximately
15Γ−1

m . Since the simulation involved a stochastic force,
the results were averaged over 50 different realisations of
the noise. The results can be seen in Figure 7. One can
see that the results for both the mechanical resonance
frequency shift and the optomechanical cooling are in
good quantitative agreement with the previous, simpli-
fied simulation. Only in the regime of mechanical lasing,
where the optomechanical damping rate is negative and
larger than the mechanical linewidth, the results from
the two simulations deviate, but this is expected as the
simplified simulation did not involve the dynamics of the
mechanical oscillator.

V. GROUND STATE COOLING WITH A
FIBER CAVITY

To investigate whether ground state cooling is possi-
ble in a fiber cavity exploiting Brillouin scattering, we
use the equations of motion approach to find the mean
number of phonons (see Appendix E for details) and the
linearised theory. To suppress thermal and thermoptic
noise, we considered the mechanical oscillator and the

FIG. 7. a): Mechanical resonance frequency shift from non-
stochastic and stochastic simulations. b): Mean squared me-
chanical displacement predicted from non-stochastic simula-
tion vs. result from stochastic simulation. Inset: high resolu-
tion results where maximum cooling is expected. In both fig-
ures, the region where the negative optomechanical damping
coefficient is larger than the mechanical linewidth is shaded.

optical fiber in a liquid nitrogen cryogenic environment
at 77 K. At cryogenic temperatures, the parameters of
the fiber noise spectral density (see Appendix B and the
peak Brillouin gain are different from the room temper-
ature value. Instead of peak Brillouin gain, previous ex-
periments measured the Brillouin linewidth. However, it
was shown that the product of peak Brillouin gain and
Brillouin linewidth remains constant [42, 43], therefore
we can rescale the previously quoted gain by the ratio
of linewidths at room temperature and at cryogenic tem-
peratures. Thus we consider gB = 6.71× 10−12 m/W at
77 K.

To obtain the minimum phonon number we considered
fiber lengths of 0.1 m, 0.2 m, 0.4 m, 0.8 m and 1.6 m.
Above 1.6 m, the free spectral range of the cavity be-
comes comparable with the Brillouin linewidth and the
single Stokes mode theory becomes inaccurate. We min-
imised computationally the mean number of phonons by
varying the ratio of input power and Brillouin thresh-
old power, cavity finesse and mechanical resonance fre-
quency oscillator. The finesse is bounded between 20 and
150 to ensure that the single-mode model is appropriate
and that the maximum theoretical finesse with fiber cav-
ities is not surpassed [20]. The mass of the mechanical
oscillator is chosen to be 10−12 kg and the quality fac-
tor is 109. We calculated the optomechanical damping
rate as a function of detuning using the linearised the-
ory in the [0, 2κ] interval. Next, we estimated the final
number of thermal phonons for the largest optomechani-
cal damping rate. In case the maximum optomechanical
damping rate is negative or the thermal phonon number
estimate is more than 100, the total phonon number is

Page 8 of 13AUTHOR SUBMITTED MANUSCRIPT - NJP-114855.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



9

set to a large number to avoid unstable and not inter-
esting regions in the parameter space. Otherwise, the
phonon number is calculated for 100 detunings ±0.1κ
around the maximum optomechanical damping rate and
the minimum phonon number is picked. Since the ob-
tained number of phonons are often inadmissible due to
negative optomechanical damping rates, the error func-
tion is not well-behaved and gradient-based optimisation
algorithms failed. Therefore, we used the differential evo-
lution algorithm to find the minimum [44]. The lowest
phonon number of 0.44 is achieved for a fiber length of
1.6 m, finesse of 150 and mechanical resonance frequency
of 12.6 kHz. Such a low frequency, high quality factor
oscillator is not common among clamped oscillators, this
could be realised in a levitated optomechanical system.
However, the coupling between the cavity field and the
oscillator is different in this case and our model is not
applicable in this scenario. For more realistic, higher fre-
quency oscillators, it is still possible to reach the ground
state using shorter fiber cavities. For a fiber cavity length
of 0.1 and mechanical resonance frequency of 105 kHz, a
phonon number of 0.83 was reached.

VI. CONCLUSION

In this paper, we have investigated the role of stimu-
lated Brillouin scattering in a fiber cavity optomechan-
ical system. We introduced a set of coupled amplitude
equations describing the optical fields in a fiber cavity,
and presented a simple theoretical model using the for-
malism of quantum optics. The latter can be solved an-
alytically after linearisation around a steady-state solu-
tion. We compared our experimental results on the op-
tical subsystem with the numerical solutions of the cou-
pled amplitude equations and the steady-state solution of
the theoretical model and found a very good qualitative
agreement between the three results. We used the cou-
pled amplitude equations with explicit mechanical mo-
tion to investigate the possibility of increased optome-
chanical damping rate due to stimulated Brillouin scat-
tering in the fiber cavity. We found that, for mechanical
resonance frequencies up to 30 kHz, optomechanical cool-
ing was enhanced for blue-detuned driving of the cavity
near the Brillouin threshold. The results are in agree-
ment with the linearised theory and a numerical sim-
ulation where the motion of the mechanical oscillator
was treated dynamically, including a stochastic driving
force. Finally, using the linearised theory, we explored
the possibility of cooling a mechanical oscillator to av-
erage phonon numbers below unity. The results show
that it is possible to cool a mechanical oscillator near
the ground state for short fiber lengths. The theoretical
model and simulations presented in this paper can also
be used to describe a cavity which is driven by a second
laser which is detuned by the Brillouin shift with respect
to the cooling laser. Being able to change the detuning
between the Stokes light and the cavity resonance might

result in enhanced performance and cooling below mean
phonon numbers of unity.

Appendix A: Discretisation scheme

As an initial approximation, we assume that the field
amplitudes do not change significantly when propagated
over δz, the distance between two points in discretised
space. In this case, we can approximate the solution for
Eq. 1 (and the other equations) within δz as

E+(0)
p (z + δz) = E+

p (z)
(

1− αδz

2
− cB |E−S (z + δz)|2δz

)
(A1)

where we decided to evaluate E−S at z + δz due to the
backwards propagation direction and the (0) superscript
indicates the approximation. Similarly, we can approxi-
mate the backwards propagating Stokes field at z as

E
−(0)
S (z) = E+

S (z+δz)
(

1− αδz
2

+cB |E−p (z)|2δz
)
. (A2)

To improve this first order approximation, we use the
above approximations to account for the spatial change
of the fields as they propagate the distance δz by defining

E+
p (z + 1

2δz) = 1
2 (E+

p (z) + E
+(0)
p (z + δz)) and E−S (z +

1
2δz) = 1

2 (E−S (z + δz) + E
−(0)
S (z)). Finally, we use these

fields defined halfway between two grid points to get the
final equations.

E+
p (z + δz) = E+

p (z)
(

1− αδz

2
− cB |E−S (z +

1

2
δz)|2δz

)
(A3)

E−S (z) = E−S (z + δz)
(

1− αδz

2
+ cB |E+

p (z +
1

2
δz)|2δz

)
.

(A4)

The equations for E−p and E+
S are obtained as a

straightforward extension of these equations. After each
cavity round-trip and when reflected on the moving mir-
ror, the field amplitudes are multiplied by the appropri-
ate complex phase factor that depends on the mechanical
displacement. Moreover, we include an additional loss at
the free space-fiber interface that accounts for the mode-
matching losses which was chosen to be a loss of 30 % in
optical power, and rescale the amplitudes by the ratio of
the beam waist diameter in free space (1 mm) and the
mode-field diameter in the fiber (6.6µm).

Appendix B: Properties of thermoptic noise

The fiber thermoptic noise is characterised by the
power spectral density
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Sφ̇φ̇(ω) =
πc2kBT

2q2

4κtλ2L
F (ω) (B1)

where

F (ω) = ln
( k4

min + (ω/D)2

k4
max + (ω/D)2

)
. (B2)

In this expression, q = α + 1
n
∂n
∂T where α is the lin-

ear expansion coefficient, kt is the thermal conductivity,
kmax = 2/w0, kmin = 2/af where w0 and af are the
fiber mode-field and fiber outer radii respectively, and D
is the thermal diffusivity. As some of these parameters
depend on temperature, their values are summarised in
Table IV. The q coefficient can be experimentally mea-
sured with fiber Bragg gratings and we used the results
of Reid and Ozcan for the non-embedded United Tech-
nologies fiber [45]. The thermal conductivity was esti-
mated by interpolating the data from Brown [46]. We
assume that the fiber mode field and fiber outer radii do
not change significantly the noise spectral density due to
the low thermal expansion coefficient and the logarith-
mic dependence. The thermal diffusivity was calculated
as D = kt/(cpρ) where cp is the specific heat capacity
at constant pressure and ρ is the mass density. Due to
the low thermal expansion coefficient of fused silica, we
only considered the temperature dependence of kt and
cp. At room temperature, we used a measured value
[47]. At cryogenic temperatures, cp ≈ cv and used the
Debye model with a Debye temperature of 500 K [48].
The results are shown in Table IV.

Parameter 300 K 77 K
q [K−1] 6.7× 10−6 2.8× 10−6

κt [Wm−1K−1] 1.35 0.52
D [m2s−1] 8.2× 10−7 2.53× 10−6

TABLE IV. Parameters used for phonon number calculations
at room and cryogenic temperatures.

Appendix C: Normalisations

To find the constant of proportionality between the
spatial Brillouin gain cB used in the simulation and the
temporal Brillouin gain GB used in theory, we have to
consider the different normalisations used. The field
amplitudes are normalised such that the time-averaged
energy density corresponding to each forward/backward
propagating travelling wave in the fiber is

〈u〉 =
n2ε0

2
|E2|. (C1)

The total energy of electromagnetic radiation in the
cavity is then

Ecav = 〈u〉Vfib (C2)

where Vfib is the fiber volume where light propagates.
Since we consider a one dimensional model only, we take
the light intensity to be constant at a given cross section
of the fiber, Vfib = Lfibπ(3.3× 10−6m)2 since the mode-
field diameter of the fiber is 6.6 µm. The number of
photons in the cavity is then ncav = Ecav/h̄ωL, which is
by definition equal to |〈a〉|2. Using the fact that in the
fiber, ∂/∂z = (n/c)∂/∂t and comparing Eqs. 1 and 5, we
arrive at the relation

GB =
2h̄ωLc

Vfibε0n3
cB . (C3)

Appendix D: Optomechanical susceptibility

After Fourier transforming Eq. (10) and solving for

δB̂, we get

δB̂[ω] =
iGBB̄

ω
(ā∗δâ[ω] + āδâ∗[ω]) (D1)

where hats and square brackets denote Fourier trans-
forms of the dynamical variables. Similarly, from Fourier
transforming Eq. (9) and grouping all terms containing
δâ[ω], we get

f(ω)δâ[ω] = iGB āx̂[ω]− g(ω)δâ∗[ω] (D2)

where

f(ω) = κ+
GBB̄

2
− i(ω + ∆− G2

BB̄|ā|2

2ω
) (D3)

and

g(ω) = − iG
2
BB̄ā

2

ω
. (D4)

As usual, δâ∗[ω] = (δâ[−ω])∗, therefore it is possible to
find the following expression that relates δâ[ω] and x̂[ω]:

δâ[ω] =
iGB ā− iGB ā

∗g(ω)
f∗(−ω)

f(ω)h(ω)
x̂[ω] (D5)

where

h(ω) = 1− g(ω)g∗(−ω)

f(ω)f∗(−ω)
. (D6)
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Combining the Fourier transform of Eq. (11), Eq. (D1)
and Eq. (D5), then solving for the optomechanical con-
tribution to the inverse susceptibility yields

χ−1
opt(ω) = − h̄GB

x̂[ω]

(
1 +

iGBB̄

ω

)
(ā∗δâ[ω] + āδâ∗[ω]) (D7)

from which we obtain the optomechanical damping rate
and mechanical resonance frequency shift.

Appendix E: Mean number of phonons

To find the mean number of phonons, we use the equa-
tions of motion approach. For this, it is convenient to
rewrite the equations of motion for the Stokes amplitude
b instead of the Stokes intensity (B). The goal is to write
the Fourier transform of the position observable as

x̂[ω] = χeff (ω)(F̂th[ω] + χa(ω)âin[ω] + χb(ω)b̂in[ω]+

χ∗a(−ω)â†in[ω] + χ∗b(−ω)b̂†in[ω] + χφ̇(ω)φ̇(ω))

(E1)

where the three quantum noise terms have the following
correlation functions

〈F̂th(t)F̂th(t′)〉 = 2kBTmΓmδ(t− t′)
〈âin(t)â†in(t′)〉 = 〈b̂in(t)b̂†in(t′)〉 = δ(t− t′)
〈â†in(t)âin(t′)〉 = 〈b̂†in(t)b̂in(t′)〉 = 0

and the power spectral density of the detuning noise is
given in Appendix B. Using these correlators, the power
spectral density of the position observable becomes

Sxx(ω) = |χeff (ω)|2(2kBTmΓm + |χa(ω)|2+|χb(ω)|2

+ Sφ̇φ̇(ω)|χφ̇(ω)|2).

The optical transfer functions are

χa(ω) = h̄G
√

2κ
(

1 +
iGB |b̄|2

ω

)
(

ā∗

f(ω)h(ω)
+

āg∗(−ω)

h∗(−ω)f∗(−ω)f(ω)
)

(E2)

χb(ω) =
−ih̄G

√
2κGB b̄

∗

2ω

(
1 +

iGB |b̄|2

ω

)
(
|a|2

f(ω)h(ω)
+

|a|2

f∗(−ω)h∗(−ω)
+

ā2g∗(−ω)

h∗(−ω)f∗(−ω)f(ω)
+

ā∗
2

g(ω)

h(ω)f(ω)f∗(−ω)
) +

ih̄G
√

2κ b̄∗

ω
(E3)

and

χφ̇(ω) = ih̄G
(

1 +
iGB |b̄|2

ω

)( |a|2

f(ω)h(ω)
+

|a|2

f∗(−ω)h∗(−ω)
+

ā2g∗(−ω)

h∗(−ω)f∗(−ω)f(ω)
−

ā∗
2

g(ω)

h(ω)f(ω)f∗(−ω)

)
.

(E4)

The number of phonons can then be calculated as

nf =
mΩ

′

m

h̄

∫ ∞
−∞

Sxx(ω)
dω

2π
(E5)

where Ω
′

m is the shifted mechanical resonance frequency.
Instead of integrating Sxx(ω) we consider the high me-
chanical quality factor approximation. In case the qual-
ity factor is large, the mechanical oscillator samples the
various external noises only near the mechanical reso-
nance frequency. Therefore, we integrate |χeff (ω)|2 ana-
lytically as a Lorentzian function and evaluate the noise
spectral densities at ±Ω

′

m. To ensure that this approxi-
mation is valid, we only accept results for which the final
effective mechanical quality factor is more than 100.
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