61 research outputs found

    Interactions between Naïve and Infected Macrophages Reduce Mycobacterium tuberculosis Viability

    Get PDF
    A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis

    Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance

    Get PDF
    Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes

    Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone

    Get PDF
    Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass

    Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    A rapid and scalable density gradient purification method for <it>Plasmodium</it> sporozoites

    No full text
    Abstract Background Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. Methods Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. Results This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax) and rodent (Plasmodium yoelii) infective species with excellent recovery rates. Conclusions This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.</p

    Specific T cells restore the autophagic flux inhibited by Mycobacterium tuberculosis in human primary macrophages

    No full text
    Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon \u3b3 (IFN-\u3b3), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process
    corecore