17 research outputs found

    Expression of thermophilic two-domain laccase from Catenuloplanes japonicus in Escherichia coli and its activity against triarylmethane and azo dyes

    Get PDF
    Background Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors» of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers’ interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. Methods A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. Results A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium

    Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from <i>Methylorubrum extorquens</i> AM1 for the Development of Bioelectrocatalytical Systems

    No full text
    (Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6β6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9–10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002–0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems

    Biocompatible Silica-Polyethylene Glycol-Based Composites for Immobilization of Microbial Cells by Sol-Gel Synthesis

    No full text
    Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene glycol (STPEG-composite) differ in the structure of the silicate phase and its distribution in the composite matrix. Methods of fluorescent and scanning microscopy first confirmed the formation of an organosilica shell around living yeast cells during sol-gel bio-STPEG-composite synthesis. Biosensors based on the yeast cells immobilized in STPEG- and SPEG-composites are characterized by effective operation: the coefficient of sensitivity is 0.85 ± 0.07 mgO2 × min−1 × mmol−1 and 0.87 ± 0.05 mgO2 × min−1 × mmol−1, and the long-term stability is 10 and 15 days, respectively. The encapsulated microbial cells are protected from UV radiation and the toxic action of heavy metal ions. Biofilters based on the developed biocatalysts are characterized by high effectiveness in the utilization of methanol-rich wastewater—their oxidative power reached 900 gO2/(m3 × cycle), and their purification degree was up to 60%

    Functionalization of MWCNTs for Bioelectrocatalysis by Bacterial Two-Domain Laccase from <i>Catenuloplanes japonicus</i>

    No full text
    This study was carried out in order to assess several modifications of carbon nanotube-based nanomaterials for their applications in laccase electrodes and model biofuel cells. The modified MWCNTs served as adapters for the immobilization of laccase from Catenuloplanes japonicus VKM Ac-875 on the surface of electrodes made of graphite rods and graphite paste. The electrochemical properties of the electrodes were tested in linear and cyclic voltammetrical measurements for the determination of the redox potential of the enzyme and achievable current densities. The redox potential of the enzyme was above 500 mV versus NHE, while the highest current densities reached hundreds of µA/cm2. Model biofuel cells on the base of the laccase cathodes had maximal power values from 0.4 to 2 µW. The possibility of practical application of such BFCs was discussed

    Journal of interferon & cytokine research

    No full text
    The methylotrophic Pichia angusta VKM Y-2559 and the oleaginous Cryptococcus curvatus VKM Y-3288 yeast cells were immobilized in a bimodal silica-organic sol-gel matrix comprised of tetraethoxysilane (TEOS), the hydrophobic additive methyltriethoxysilane (MTES) and the porogen polyethylene glycol (PEG). Under carefully optimized experimental conditions, employing basic catalysts, yeast cells have become the nucleation centers for a silica-organic capsule assembled around the cells. The dynamic process involved in the formation of the sol-gel matrix has been investigated using optical and scanning electron microscopic techniques. The results demonstrated the influence of the MTES composition on the nature of the encapsulation of the yeast cells, together with the architecture of the three-dimensional (3D) sol-gel biomatrix that forms during the encapsulation process. A silica capsule was found to form around each yeast cell when using 85. vol% MTES. This capsule was found to protect the microorganisms from the harmful effects that result from exposure to heavy metal ions and UV radiation. The encapsulated P. angusta BKM Y-2559 cells were then employed as a biosensing element for the detection of methanol. The P. angusta-based biosensor is characterized by high reproducibility (Sr, 1%) and operational stability, where the biosensor remains viable for up to 28 days

    Three-Dimensional Organization of Self-Encapsulating Gluconobacter oxydans Bacterial Cells

    No full text
    Self-organized bacteria have been the subject of interest for a number of applications, including the construction of microbial fuel cells. In this paper, we describe the formation of a self-organized, three-dimensional network that is constructed using Gluconobacter oxydans B-1280 cells in a hydrogel consisting of poly­(vinyl alcohol) (PVA) with <i>N</i>-vinyl pyrrolidone (VP) as a cross-linker, in which the bacterial cells are organized in a particular side-by-side alignment. We demonstrated that nonmotile G. oxydans cells are able to reorganize themselves, transforming and utilizing PVA–VP polymeric networks through the molecular interactions of bacterial extracellular polysaccharide (EPS) components such as acetan, cellulose, dextran, and levan. Molecular dynamics simulations of the G. oxydans EPS components interacting with the hydrogel polymeric network showed that the solvent-exposed loops of PVA–VP extended and engaged in bacterial self-encapsulation
    corecore