10 research outputs found

    High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Get PDF
    Part 1 of this report continues the investigation, initiated in previous reports, of scattering from rectangular plates coated with lossy dielectrics. The hard polarization coefficients given in the last report are incorporated into a model, which includes second- and third-order diffractions, for the coated plate. Computed results from this model are examined and compared to measured data. A breakdown of the contribution of each of the higher-order terms to the total radar cross section (RCS) is given. The effectiveness of the uniform theory of diffraction (UTD) model in accounting for the coating effect is investigated by examining a Physical Optics (PO) model which incorporates the equivalent surface impedance approximation used in the UTD model. The PO, UTD, and experimental results are compared. Part 2 of this report presents a RCS model, based on PO and the Method of Equivalent Currents (MEC), for a trihedral corner reflector. PO is used to account for the reflected fields, while MEC is used for the diffracted fields. Single, double, and triple reflections and first-order diffractions are included in the model. A detailed derivation of the E(sub theta)-polarization, monostatic RCS is included. Computed results are compared with finite-difference time-domain (FDTD) results for validation. The PO/MEC model of this report compares very well with the FDTD model, and it is a much faster model in terms of computational speed

    A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Get PDF
    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors

    RCS Analysis of Plate Geometries, parts 1 and 2

    Get PDF
    High-frequency techniques for Radar Cross Section (RCS) prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors are addressed. In part 1, a Uniform Theory of Diffraction (UTD) model for the principal-plane radar cross section (RCS) of a perfectly conducting, rectangular plate coated on one side with an electrically thin, lossy dielectric is presented. In part 2, the scattering in the interior regions of both square and triangular trihedral corner reflectors are examined

    High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    Get PDF
    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model

    Calculation of Heartbeat Rate and SpO<sub>2</sub> Parameters Using a Smartphone Camera: Analysis and Testing

    No full text
    Mathematical and signal-processing methods were used to obtain reliable measurements of the heartbeat pulse rate and information on oxygen concentration in the blood using short video recordings of the index finger attached to a smartphone built-in camera. Various types of smartphones were used with different operating systems (e.g., iOS, Android) and capabilities. A range of processing algorithms were applied to the red-green-blue (RGB) component signals, including mean intensity calculation, moving average smoothing, and quadratic filtering based on the Savitzky–Golay filter. Two approaches—gradient and local maximum methods—were used to determine the pulse rate, which provided similar results. A fast Fourier transform was applied to the signal to correlate the signal’s frequency components with the pulse rate. We resolved the signal into its DC and AC components to calculate the ratio-of-ratios of the AC and DC components of the red and green signals, a method which is often used to estimate the oxygen concentration in blood. A series of measurements were performed on healthy human subjects, producing reliable data that compared favorably to benchmark data obtained by commercial and medically approved oximeters. Furthermore, the effect of the video recording duration on the accuracy of the results was investigated

    Theoretical findings and measurements on planning a UHF RFID system inside a room

    No full text
    Summarization: This paper investigates the problem of im-proving the identification performance of a UHF RFID system inside a room. We assume static reader, passive tags and availability of commodity antennas. A ray-tracing propagation model is developed that includes multipath in 3D space. It is found that careful selection of reader antenna placement and tilting must be performed to control destructive interference effects. Furthermore, 3D coverage performance gains on the order of 10% are observed by implementing tags' diversity. A device that successfully manipulates destructive interference is intro-duced. All theoretical findings are verified by meas-urements. Finally, a method to perform propagation measurements with commodity RFID hardware is demonstrated.Presented on: Radioengineerin

    Europe and the future for WPT

    No full text
    \u3cp\u3eThis article presents European-based contributions for wireless power transmission (WPT), related to applications ranging from future Internet of Things (IoT) and fifth-generation (5G) systems to high-power electric vehicle charging. The contributors are all members of a European consortium on WPT, COST Action IC1301. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including batteryless sensors, passive RF identification (RFID), passive wireless sensors, the IoT, and machine-to-machine solutions. The article discusses the latest developments in research by some of the members of this group.\u3c/p\u3

    Europe and the future for WPT COST action IC1301 team

    No full text
    This article presents European-based contributions for wireless power transmission (WPT), related to applications ranging from future Internet of Things (IoT) and fifth-generation (5G) systems to high-power electric vehicle charging. The contributors are all members of a European consortium on WPT, COST Action IC1301. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including batteryless sensors, passive RF identification (RFID), passive wireless sensors, the IoT, and machine-to-machine solutions. The article discusses the latest developments in research by some of the members of this group

    Europe and the future for WPT: European contributions to wireless power transfer technology

    No full text
    Summarization: This article presents European-based contributions for wireless power transmission (WPT), related to applications ranging from future Internet of Things (IoT) and fifth-generation (5G) systems to high-power electric vehicle charging. The contributors are all members of a European consortium on WPT, COST Action IC1301. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including batteryless sensors, passive RF identification (RFID), passive wireless sensors, the IoT, and machine-to-machine solutions. The article discusses the latest developments in research by some of the members of this group.Presented on: IEEE Microwave Magazin
    corecore