53 research outputs found

    Synergism between the N-acetyltransferase 2 gene and oxidant exposure increases the risk of idiopathic male infertility

    Get PDF
    N-acetyltransferase (NAT2) is a phase-II xenobiotic-metabolizing enzyme participating in the detoxification of toxic arylamines, aromatic amines and hydrazines. The present study was designed to investigate whether two common single-nucleotide polymorphisms (SNP) of the NAT2 gene (481C>T, rs1799929; 590G>A, rs1799930) are associated with susceptibility to idiopathic male infertility and to assess if the risk is modified by oxidant and antioxidant exposures. A total 430 DNA samples (203 infertile patients and 227 fertile men) were genotyped for the polymorphisms by PCR and restriction fragment length polymorphism. No association was found between the NAT2 polymorphisms and idiopathic male infertilit

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation

    The role of obesity in the implementation of genetic predisposition to the development of essential hypertension in men

    Get PDF
    BACKGROUND: Obesity is considered a non-infectious pandemic, and the increase in its spread is a serious medical and social problem. High values of body mass index closely correlate with arterial hypertension and its complications, but the effect of obesity on the realization of hereditary susceptibility to essential hypertension (EH) remains poorly understood. AIMS: To study the associations of polymorphic loci of MMPs with the development of EH in men depending on the presence of obesity. MATERIALS AND METHODS: The study was conducted in a case-control design. Surveyed 821 men &ndash; 564 patients with hypertension and 257 patients of the control group. Groups of patients and controls were divided into subgroups depending on the presence of obesity. All men were genotyped for eight polymorphic loci of MMPs. Nonsynonymous SNPs were detected using the software SIFT (https://sift.bii.a-star.edu.sg/). The regulatory potential was studied using the HaploReg service (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php). The association of SNPs with the expression level was detected using GTEx-portal (http://www.gtexportal.org). RESULTS: It was found that in obese men allele A (OR=2.01; p=0.01) and genotype GG (OR=0.42, p=0.01) of rs11568818 MMP7 are associated with the essential hypertension. In men without obesity allele 6A (OR=1.32; p=0.04) of rs3025058 MMР3 and genotypes GG (OR=1.52; p=0.04) and GA (OR=0.63; p=0.03)) of rs17577 MMP9 are associated with the development of the disease. These SNPs located in region of promoter and enhancer histone marks, in the region of hypersensitivity to DNAse-1, in binding sites of regulatory proteins and transcription factors. These SNPs associated with the level of gene expression. CONCLUSIONS: In this study we established associations with the development of EH of SNP rs11568818 MMP7 in obese men and of SNPs rs3025058 MMР3 and rs17577 MMP9 in non-obese men

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation

    Differences between Human Plasma and Serum Metabolite Profiles

    Get PDF
    BACKGROUND: Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. CONCLUSIONS/SIGNIFICANCE: Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection

    Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorphisms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated individual genes and gene sets were examined in post-mortem brains across lifespan.Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA: GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (PFDR = 0.0377), and NCAM signaling for neurite out-growth, for which 11 out of 62 genes were BD associated (PFDR = 0.0451). Most pathway genes showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and parts of the limbic system.Pathway associations were technically reproduced by two methods, although they were not formally replicated in independent samples. Gene expression was explored in controls but not in patients.Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy brains provide support for an involvement of neurodevelopmental processes in the etiology of this neuropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on pathway functioning and clinical aspects of BD

    The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size

    No full text
    The purpose of this pilot study was to explore whether polymorphisms in genes encoding the catalytic (GCLC) and modifier (GCLM) subunits of glutamate-cysteine ligase, a rate-limiting enzyme in glutathione synthesis, play a role in the development of ischemic stroke (IS) and the extent of brain damage. A total of 1288 unrelated Russians, including 600 IS patients and 688 age- and sex-matched healthy subjects, were enrolled for the study. Nine common single nucleotide polymorphisms (SNPs) of the GCLC and GCLM genes were genotyped using the MassArray-4 system. SNP rs2301022 of GCLM was strongly associated with a decreased risk of ischemic stroke regardless of sex and age (OR = 0.39, 95%CI 0.24&ndash;0.62, p &lt; 0.0001). Two common haplotypes of GCLM possessed protective effects against ischemic stroke risk (p &lt; 0.01), but exclusively in nonsmoker patients. Infarct size was increased by polymorphisms rs636933 and rs761142 of GCLC. The mbmdr method enabled identifying epistatic interactions of GCLC and GCLM gene polymorphisms with known IS susceptibility genes that, along with environmental risk factors, jointly contribute to the disease risk and brain infarct size. Understanding the impact of genes and environmental factors on glutathione metabolism will allow the development of effective strategies for the treatment of ischemic stroke and disease prevention

    A Polymorphism in the Gene Encoding Heat Shock Factor 1 (HSF1) Increases the Risk of Type 2 Diabetes: A Pilot Study Supports a Role for Impaired Protein Folding in Disease Pathogenesis

    No full text
    The aim of this pilot study was to investigate whether polymorphisms in the gene encoding heat shock factor 1 (HSF1), a transcriptional activator of molecular chaperones, play a role in the development of type 2 diabetes (T2D). A total of 3229 unrelated individuals of Slavic origin, including 1569 T2D patients and 1660 age- and sex-matched healthy controls, were enrolled for the study. Five common single nucleotide polymorphisms (SNPs) of the HSF1 gene were genotyped using the MassArray-4 system. SNPs rs7838717 (p = 0.002) and rs3757971 (p = 0.005) showed an association with an increased risk of T2D in females with a body mass index &ge; 25 kg/m2. The rs7838717T-rs4279640T-rs3757971C and rs7838717T-rs4279640T-rs3757971T haplotypes were associated with increased and decreased disease risk in overweight or obese females, respectively. The associations were replicated as disease susceptibility genes in large cohorts from the UK Biobank (p = 0.008), DIAMANTE (p = 2.7 &times; 10&minus;13), and DIAGRAM (p = 0.0004) consortiums. The functional annotation of the SNPs revealed that the rs7838717-T and rs3757971C alleles correlated with increased expression of the genes involved in unfolded protein response. The present study showed, for the first time, that genetic variation of HSF1 is associated with the risk of type 2 diabetes, supporting a role for impaired protein folding in disease pathogenesis
    corecore