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Abstract

Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to
comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level.
Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic
signatures with complex diseases such as Alzheimer’s disease and cardiovascular and metabolic disorders has been shown.
There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a
disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual
dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum
metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than
3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino
acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant
concentration differences between males and females for 102 out of 131 metabolites (p-values,3.861024; Bonferroni-
corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in
beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p,3.8610210; Bonferroni-
corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and,
furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new
important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider
sex-specific effects in design and interpretation.
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Introduction

Metabolomics provides a powerful tool to analyse physiological

and disease-induced biological states on the molecular level, taking

into account both the organism’s intrinsic properties, i.e. genetic

factors, and the effects of lifestyle, diet, and environment. The

development of sophisticated analytic platforms and modern

computational tools to handle increasingly complex data now

enables the quantification of hundreds of metabolites from

complex biological samples with a high throughput rate. These

advancements support the integration of metabolomic profiles

with genetic, epigenetic, transcriptomic and proteomic data for

holistic systems biology approaches. Recently, common genetic

variants have been demonstrated to exert large effects on

individual metabolic capacities called ‘‘genetically determined

metabotypes’’ [1,2]. Therefore genetic variants in metabolism-

related genes led to specific and clearly differentiated metabolic

phenotypes [1,3]. Knowledge on such genetically determined

metabotypes is of crucial importance to understand the contribu-

tion and complex interaction of genes, proteins and metabolites in

health and disease. Consequently, genetic studies can help to

elucidate the direction of effects between metabolites and a specific

disease. Thus, the combination of genetic and metabolic markers

is an important emerging approach for biological research. To

uncover potentially confounding influences on the interpretation

of metabolic results, it is important to minimize the occurring

confounders on human serum metabolites in a population-based

study that has not been subjected to lifestyle and dietary controls.

Pointed out recently, gender inequalities are another increasingly

recognized problem in both basic research and clinical medicine

[4]. Nevertheless, many published studies did not analyse their

data stratified by sex [4–6] although there is a strong correlation

between sex and the incidence, prevalence, age at onset, symptoms

and severity of a disease, as well as the reaction to drugs [7,8]. A

survey of studies published in 2004 of nine different medical

journals found that only 37% of participants were women (24%

when restricted to drug trials), and only 13% of studies analysed

data by sex [4]. Therefore we systematically assessed the effect of

sex on serum metabolites in a large population-based cohort [9].

Furthermore, we investigated whether there are sex-specific

differences in the genetic determination of metabotypes.

Results

Phenotypic Metabotype Differences between Males and
Females

All phenotypic analysis steps were performed on population-

based cohort data from KORA F4 (1452 males, 1552 females) and

KORA F3 (197 males, 180 females, Figure S1) with fasting serum

concentrations of 131 metabolites. The metabolites covered a

biologically relevant panel that could be divided into five

subgroups such as amino acids, sugars, acylcarnitines and

phospholipids. Further information concerning the study popula-

tion, sampling methods and the metabolite panel are described in

the Material and Methods section and in the Tables S1, S6, and

S7 and Figure S3.

A Partial Least Square (PLS) analysis [10] of all metabolites

showed that there were major differences of mean serum

metabolite concentrations between males and females, as the

values for the first two PLS components clustered clearly for men

and women (Figure 1).

Motivated by the global gender differences in metabolite

concentrations shown by PLS analysis, furthermore, the effect of

sex on each metabolite was analysed using linear regression

analysis. For each metabolite we calculated a linear regression with

the logarithm of the metabolite concentration as dependent and

sex as explanatory variable besides the covariates age, BMI and

internal batch. The test whether the explanatory variable sex has a

significant effect on the logarithm of the metabolite concentration

revealed significant effects of gender in 102 of 131 metabolites (p-

value below the Bonferroni-corrected significance level of 3.86
1024). At least one metabolite of each subgroup including amino

acids, acylcarnitines, phosphatidylcholines, lysophosphatidylcho-

lines and sphingomyelins showed significant sex-specific differenc-

es in metabolite concentrations. In Table 1 the results of the linear

regression analysis for representatives of each subgroup are

presented, the complete list of results can be found in the Table

S2.

The linear regression analysis showed that the concentrations of

most amino acids were significantly higher in males except for the

concentrations of glycine (effect of sex: ß = 20.13, p-value = 2.3

610246) and serine (effect of sex: ß = 20.13, p-value = 1.0610212)

which displayed higher concentrations in females. (Table 1, Table

S2). The relative sex-specific difference for glycine was D= 214%

(Table S8). That means that the mean concentration in men was

14% lower than in women (see Material and Methods). The levels of

most serum acylcarnitines were significantly higher in males

compared to females (Table 1, Table S2 and S8). The concentrations

of phosphatidylcholines (PC ae Cx:y or PC aa Cx:y) tended to be

significantly lower in males compared to females. The most

significant difference between gender could be seen for the

phosphatidylcholine PC aa C32:3 (D= 217.9%, p-value = 4.4

6102108), whereas lysophosphatidylcholine (lysoPC a Cx:y) concen-

trations were higher in males compared to females. In contrast, the

concentrations of most sphingomyelins were significantly lower in

men than in women (Table 1, Table S2 and S8). The concentration

of H1 which is the sum of C6-sugars, was significantly higher in

males compared to females (D= 7.3%, p-value = 6.2610227) (Table 1,

Table S2 and S8). Figure 2 systematically reviews the sex-specific

metabolite variations identified in this study.

The adjustment for different covariates (e.g.: waist-hip ratio

(WHR), HDL (high density lipoprotein), LDL (low density

Author Summary

The combination of genomic and metabolic studies
during the last years has provided astonishing results.
However, most of the studies published so far did not
consider the role of sexual dimorphism and did not
analyse their data stratified by sex. The investigation of 131
serum metabolite concentrations of .3,300 population-
based samples (KORA F3/F4) revealed significant differ-
ences in the metabolite profile of males and females.
Furthermore, a genome-wide picture of sex-specific
genetic variations in human metabolism (.2,000 subjects
from KORA F3/F4 cohorts) was investigated. Sex-specific
genome-wide association studies (GWAS) showed differ-
ences in the effect of genetic variations on metabolites in
men and women. SNPs in the CPS1 (carbamoyl-phosphate
synthase 1) locus showed genome-wide significant differ-
ences in beta-estimates of sex-specific association analysis
(significance level: 3.8610210) for glycine. As global
metabolomic techniques are more and more refined to
identify more compounds in single biological samples, the
predictive power of this new technology will greatly
increase. This suggests that metabolites, which may be
used as predictive biomarkers to indicate the presence or
severity of a disease, have to be used selectively
depending on sex.
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lipoprotein), triglycerides, type 2 diabetes, smoking and high

alcohol consumption) did not affect the sex-specific differences in

the metabolite concentrations extensively. The majority of the

high significant sex-effects remained significant. In particular,

adjustments for lipid parameter (HDL, LDL and triglycerides),

type 2 diabetes, smoking and high alcohol consumption did not

influence our main findings. If WHR was included into the linear

regression model as covariate replacing BMI or as additional

covariate besides BMI, the p-values of the sex-effect on metabolites

changed, but for most metabolite concentrations the gender-

differences remained significant. Interestingly, there were seven

PC aa Cx:ys and Lyso PC a C17:0 that showed significant

differences between sexes while adjusting for age and WHR but

not for BMI and age adjustment. We refer the interested reader to

Table S2.

As replication the same linear regression approach (covariates:

age, BMI) was applied to the KORA F3 cohort which included

377 individuals (Figure S1). Despite this smaller sample size for 63

of 102 metabolites with a significant effect of sex in KORA F4, the

effect of sex in KORA F3 had the same direction and a significant

p-value lower than the Bonferroni-corrected replication significance

level corrected for the 102 metabolites taken forward to replication

(0.05/102 = 4.961024). That means 61.8% of the sex-specific

differences could be replicated (Table 1, Table S3).

A combined meta-analysis of KORA F4 and KORA F3

revealed 113 metabolites with a significant effect of sex

(Bonferroni-corrected meta-analysis significance level: p,3.86
1024) (Table S3).

Sex-Specific Effects in the Metabolic Network
We further investigated how groups of metabolites share

pairwise correlations, that mean similar effects, and how the sex-

specific effects propagate through the metabolic network.

Therefore we calculated a partial correlation matrix between all

metabolites, corrected against age, sex and BMI [11]. The

resulting network, which is also referred to as a Gaussian graphical

model (see Material and Methods), was annotated with the results

from the linear regression analysis to get a comprehensive picture

of sex-effects in this data-driven metabolic network (Figure 3). We

applied a cut-off of r = 0.3 (r = partial correlation coefficient) in

order to emphasize strong inter-metabolite effects. We observe a

general structuring of the network into members from similar

metabolic classes, e.g. the amino acids, the phosphatidylcholines,

sphingomyelins and acylcarnitines (Figure 3). Direct correlations

between metabolites, as represented by partial correlation

coefficients, are rare in this metabolite panel with only around

1% of all partial correlations showing a strong effect above r = 0.3

(Figure S4 and S5). For this specific cut-off we obtained 14 non-

singleton groups, which can be regarded as independently

regulated phenotypes within the measured metabolite panel.

Detailed description of the distribution of partial correlations and

the group structure in the network can be found in Figure S4 and

S5. The low connectedness of the network is in line with findings

from Krumsiek et al. 2011 [11] who demonstrated that Gaussian

graphical models are sparsely connected on the one hand, but

specifically exclude indirect metabolic interactions on the other

hand.

Strikingly, sex-specific effects appear to be localized with respect

to metabolic classes and connections in the partial correlation

matrix. For instance, while most sphingomyelin concentrations

have been shown to be higher in females, we also observe them to

be a connected component in the GGM. Similarly, acylcarnitines

are higher in males and also share partial correlation edges, mostly

with other acylcarnitines (Figure 3). Interestingly, we observed

three metabolite pairs from the PC aa and lyso-PC classes,

respectively, which constitute a side chain length difference of 18

carbon atoms (yellow shaded metabolite pairs, Figure 3).

Genotypic Metabotype Differences between Males and
Females

For the identification of differences in genetically determined

metabotypes, we used a subpopulation of 1809 participants of the

Figure 1. Two dimensional partial least square (PLS) analyses showing the contribution of 131 metabolites in males and females.
doi:10.1371/journal.pgen.1002215.g001

Sex-Specific Metabotypes in Human Metabolism
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KORA F4 (Geno-KORA F4) study. The replication was done in

an independent subsample of KORA F4 (Rep-KORA F4) and in a

subsample of the KORA F3 (Rep-KORA F3) cohort, see Material

and Methods for details and Figure S1.

Sex-stratified genome-wide association analysis adjusted for age

and BMI were performed for logarithmized concentrations of all

metabolites. In order to reveal gender differences we tested the

estimated SNP effects for heterogeneity between men and women

(see Material and Methods, Figure 4 and Figure S2). We applied a

Bonferroni-corrected genome-wide significance level of 561028/

131 = 3.8610210. All SNPs with a minor allele frequency (maf)

lower than 1% in men or in women were excluded. Moreover,

SNPs with a low quality of imputation (rsq,0.4) were also

excluded. Eight SNPs on chromosome 2 showed genome-wide

significant differences in SNP effects (beta-estimates) between men

and women for association with glycine (Table 2). The absolute

beta-estimates of all eight significant SNPs were higher in women

compared to men. The strongest gender difference was seen at

SNP rs715 with a genome-wide significant p-value of 3.65610210

for the test of beta-estimate differences. For men the observed

effect of rs715 was -0.067 and for women 20.2 (Table 2). SNP

rs715 is part of the 39 UTR region of the CPS1 gene. SNP

rs7422339 with a p-value of 3.24610211 for the test of beta-

estimate differences is in a non synonymous coding region of

CPS1. All other significant SNPs are intergenetic but located in the

same region (Table S5). Local association plots for the association

of this region with glycine for males and females are presented in

Figure S3. The differences in beta-estimates remained significant

for GWAs with adjustment for WHR instead of BMI or BMI and

WHR combined (Table S4).

The significant differences in beta-estimates between men and

women for the association of the eight reported SNPs with glycine

were replicated in two independent cohorts Rep-KORA F4 and

Rep-KORA F3, including 788 women and 758 men. In the first

replication cohort Rep-KORA F4 (583 men, 635 women) the

absolute beta-estimate for SNP rs7422339 was also higher in

women (beta = 20.225) compared to men (beta = 20.081). The

absolute difference of the beta-estimates for SNP rs7422339 was

with 0.144 similar to the difference observed in the discovery

sample. The p-value of the test for difference in beta-estimates of

the replication was 1.3610213. The other seven SNPs were not

available for the Rep-KORA F4 cohort due to other genotyping

Table 1. Phenotypic metabotype differences between males and females of the discovery set (KORA F4) and the replication study
(KORA F3).

Discovery Replication Metaanalysis

metabolites ß p-value r2 ß p-value r2 ß p-value

acylcarnitines

C18 0.146 5.6E-57 21.1% 0.092 3.6E-04 8.4% 0.140 2.5E-61

C10 0.089 2.3E-10 7.9% 0.068 1.0E-01 7.4% 0.087 5.8E-11

C10.1 0.088 5.2E-14 15.9% 0.061 1.0E-01 10.2% 0.085 1.3E-14

amino acids

xLeu 0.206 1.6E-190 30.2% 0.165 1.1E-15 22.9% 0.202 3.8E-235

Val 0.142 1.9E-78 23.9% 0.096 2.4E-07 18.6% 0.136 5.4E-88

Gly 20.130 9.1E-46 10.9% 20.112 2.4E-06 11.1% 20.128 3.4E-52

phosphatidylcholines

PC aa C32:3 20.192 1.4E-106 15.6% 20.272 1.4E-23 24.5% 20.200 1.3E-138

PC aa C28:1 20.133 1.1E-53 8.5% 20.219 4.7E-18 18.8% 20.143 1.8E-71

PC ae C40:3 20.160 5.0E-99 18.7% 20.177 2.6E-14 16.0% 20.161 3.0E-120

PC ae C30:2 20.152 9.1E-53 8.1% 20.214 1.1E-22 22.8% 20.164 4.2E-77

lysophosphatidylcholines

lysoPC a C20:4 0.191 5.4E-62 10.8% 0.125 9.7E-05 8.6% 0.184 2.1E-67

lysoPC a C18:2 0.183 6.2E-55 22.6% 0.136 4.7E-05 17.6% 0.178 1.8E-60

lysoPC a C18:1 0.145 1.4E-41 12.7% 0.106 1.9E-04 16.3% 0.140 1.5E-45

sphingomyelins

SM (OH) C22:2 20.228 1.1E-124 19.6% 20.274 3.5E-25 27.3% 20.234 1.7E-163

SM C18:1 20.200 1.3E-101 20.1% 20.266 3.4E-26 27.0% 20.209 1.1E-136

SM C20:2 20.283 7.5E-100 17.7% 20.280 6.8E-26 25.8% 20.282 1.0E-135

hexoses

H1 0.065 6.2E-27 10.5% 0.029 1.6E-01 7.4% 0.062 3.0E-27

P-values were calculated by a linear regression model with metabolites as dependent variable and sex as explanatory variable adjusted for age and BMI. Presented is a
set of results of highly significant metabolite concentration differences between males and females of each metabolite subclass out of the 131 tested metabolites. A full
list of results for all metabolites and additional information on the complete metabolite panel is provided as supplementary data (Table S2 and S3). Significance level
after Bonferroni-correction is p-value = 3.8610-4.
C5 = valerylcarnitine, C0 = carnitine, C18 = octadecanoylcarnitine, xLeu = isoleucine+leucine, Val = valerine, Gly = glycine, PC aa Cx:y = phosphatidylcholine diacyl
x:y, PC ae Cx:y = phosphatidylcholine acyl-akyl Cx:y, LysoPC a Cx:y = lysophosphatidylcholine acyl Cx:y, SM (OH) Cx:y = hydroxyshingomyeline Cx:y, SM Cx:y =
shingomyelin Cx:y; ß = beta-estimate of linear regression, r2 = explained variance.
doi:10.1371/journal.pgen.1002215.t001
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methods. In the second but smaller Rep-KORA F3 cohort seven

of the eight SNPs were available. For SNP rs7422339 we observed

that the absolute beta-estimate in men (beta = 20.115) was also

lower than the absolute beta-estimate in women (beta = 20.229).

The absolute difference of the beta-estimates for SNP rs7422339

was 0.144 similar to the absolute difference in beta-estimates

observed in the discovery and the first replication cohort (Rep-

KORA F4). The p-value for the test of difference in beta-estimates

was not significant in Rep-KORA F3 (p-value = 0.032). For the

remaining six SNPs, which were taken forward for replication in

Rep-KORA F3 the beta-estimates were also lower in males

compared to females but the p-values of the test of beta-differences

between men and women were not significantly replicated in the

Rep-KORA F3 cohort (Table 2).

Discussion

There have been only few studies addressing metabolic

differences between males and females, and most of these studies

were rather small in sample size and determined only a small

number of metabolites [5,12]. We investigated a large population-

based study with sufficient statistical power to examine associations

within subgroups and a large number of metabolites. Our findings

shed light on sex-specific architecture of the human metabolome

and provide clues on biochemical mechanisms that might explain

observed differences in susceptibility and time course of the

development of common diseases in males and females. Our data

provided new insights into sex-specific metabotype differences.

Combining results from linear regression with partial correlation

analysis (resulting in a Gaussian graphical model) yielded interesting

insights into how sex-specific concentration differences spread over

the metabolic network (Figure 3). The analysis suggests that sex-

specific concentration differences affect whole metabolic pathways

rather than being randomly spread over the different metabolites. In

addition, we found three interesting inter-class associations between

PCaa/PCae species and lyso PC species (highlighted in yellow in

Figure 3). Those pairs shared a strong partial correlation but

displayed differential concentration patterns with respect to gender

effects. Furthermore, these pairs displayed a fatty acid residue

difference of C18:0, indicating that this fatty acid species might be a

key compound giving rise to opposing metabolic gender effects.

Direct experimental evidence indicated a role for sphingolipids

(sphingomyelins and ceramides) in several common complex

chronic disease processes including atherosclerotic plaque forma-

tion, myocardial infarction (MI), cardiomyopathy, pancreatic beta

cell failure, insulin resistance, coronary heart disease and type 2

diabetes (T2D) [13,14]. Already young children (between birth

and 4 years old, with low levels of sex-hormones) may reveal

significant sex-specific differences in plasma sphingolipid concen-

trations [15]. Our observations described new sex-specific

Figure 2. Systematic view of metabotype variations in the metabolism of males and females. It also shows the suggestive locus that is
located in a gene encoding an enzyme that is central in human metabolism. CPS1 is related to the amino acid metabolism. For this locus the
metabolite with the strongest association is provided (green box). A blue arrow indicates metabolite concentrations which are higher in men than in
women; green arrows vice versa.
doi:10.1371/journal.pgen.1002215.g002

Sex-Specific Metabotypes in Human Metabolism
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differences, while other lipid-derived molecules, like bile acids,

were already demonstrated not to be sex-specific [16]. Therefore

sphingomyelins represent important intermediate phenotypes. The

concentration differences between males and females of acylcarni-

tines described in this study coincide with previous findings

showing that carnitine (C0) and acetylcarnitine (C2) concentra-

tions were higher in males than in females[17,18]. Phosphatidyl-

cholines, as demonstrated in this study, are another gender-specific

phenotype. Ghrelin (controlling energy homeostasis and pituitary

hormone secretion in humans) levels have been shown to be

similar in men and women and did not vary by menopausal status

or in association with cortisol levels [19]. These findings of our and

other studies urgently suggest when using metabolites for disease

prediction gender has to be strictly taken into account.

A previously published non sex-stratified GWA study on

metabolites based on the same population Geno-KORA F4

reported 15 loci which showed genome-wide significant associa-

tions with at least one metabolite concentration or ratio [1].

Besides others the locus CPS1 was found to have a significant effect

on glycine concentrations. But the findings of this sex-stratified

genome-wide association analysis revealed that the genetic

determination of CPS1 differs significantly between males and

females. Therefore it is important to analyse the data stratified by

sex. SNP rs74223369 on chromosome 2 in the 39 UTR region of

the gene CPS1 showed a genome-wide significant difference in

beta-estimates between men and women for association with

glycine. The gender-specific effect of SNP rs7422339 was

significantly replicated as the difference between the beta-estimates

of men and women was of the same direction in the discovery

sample and in the replication cohort Rep-KORA F4 and the p-

value of the test of differences was lower than the replication

significance niveau (0.05/8). The other SNPs of the CPS1 gene

region also showed significant gender-specific effects but these

effects could not be replicated in the Rep-KORA F3 cohort. As

the effect-sizes and differences for the SNP rs7422339 are similar

and at least for the other SNPs are pointing into the same direction

as in the discovery set, the failed replication in Rep-KORA F3

might be a problem of power due to the smaller sample size.

CPS1, which encodes the mitochondrial enzyme CPS1, plays a

pivotal role in protein and nitrogen metabolism catalyzing the first

committed step of the hepatic urea cycle. Once ammonia has

entered the mitochondria via glutamine or glutamate, CPS1 adds

the ammonia to bicarbonate along with a phosphate group to form

carbamoyl phosphate. Carbamoyl phosphate is then put into the

urea cycle. The hepatic urea cycle is responsible for the elimination

of ammonia in the form of urea as well as the synthesis of arginine.

Among others, Döring et al. 2008 could show that there is strong

evidence that, in addition to environmental components, a strong

genetic and sex-specific control influences the regulation of blood

uric acid concentration. They showed that the proportion of the

Figure 3. Gaussian graphical model of all measured metabolites illustrating the correlation strength and the propagation of
gender-specific effects through the underlying metabolic network. Each node represents one metabolite whereas edge weights correspond
to the strength of partial correlation. Only edges with a partial correlation above r = 0.3 are shown. Node colouring represents the strength of
association (measured using b from linear regression analysis) towards either males or females. Metabolite names marked with a star * represent
significantly different metabolites between genders. Yellow highlighted pairs of metabolites differ by a C18:0 fatty acid residue.
doi:10.1371/journal.pgen.1002215.g003
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variance of serum uric acid concentrations explained by SLC2A9

genotypes was about 1.2% in men and 6% in women [12].

Brandstätter et al. 2010 also observed a sex-specific interaction with

genetic association of atherogenic uric acid concentrations [20].

Paré et al. 2009 described that the CPS1 SNP rs7422339, which

encodes the substitution of asparagine to threonine (T1405N) in the

region critical for N-acetyl-glutamate binding resulting in 20% to

30% higher enzymatic activity [21], is associated with homocysteine

also in a sex-specific manner in their study [22]. Also in an Asian

population the effects of the genetic variations of the CPS1 gene

were stronger in women than in men [23].

Interestingly a meta-analysis of genome-wide association data in

67,093 individuals also of European ancestry identified recently

CPS1 to affect creatinine production and secretion in Chronic

Kidney Disease (CKD) [24]. Hicks et al. 2009 performed a GWAS

of different circulating sphingolipids in five diverse European

populations [3]. They could show associations of genetic loci with

several lipid species but did not analyse their data stratified by sex.

There is just some evidence for loci with differential sex-effects

influencing classical lipids like HDL [25]. Therefore identification

of sex-specific genetic variants, that alter the homeostasis of key

metabolites in males and in females, will lead to a better functional

understanding of the genetics of complex disorders.

As global ‘omics’-techniques are more and more refined to identify

more compounds in single biological samples, the predictive power of

these new technologies will greatly increase. Metabolite concentration

profiles and genomic data can be used as predictive biomarkers to

indicate the presence or severity of a disease depending on gender.

Our study provides new important insights into sex-specific

differences of cell regulatory processes and underscores that studies

should consider gender-specific effects in design and interpretation.

Our findings help to understand biochemical mechanisms underlying

sexual dimorphism, a phenomenon which may explain the

differential susceptibility to common diseases in males and females.

Materials and Methods

Ethics Statement
Written informed consent has been given by each participant.

The study, including the protocols for subject recruitment and

assessment and the informed consent for participants, was

reviewed and approved by the local ethical committee (Bayerische

Landesärztekammer).

Study Population
The KORA S4 survey, an independent population-based sample

from the general population living in the region of Augsburg,

Southern Germany, was conducted in 1999/2001. The standardized

examinations applied in the survey (4261 participants) have been

described in detail elsewhere [1,9,26]. A total of 3080 subjects

participated in a follow-up examination of S4 in 2006-08 (KORA

F4), comprising individuals who, at that time, were aged 32–81 years

(Figure S3). In a sample of 3061 individuals metabolomics data was

available. This subgroup was used as discovery sample of the

phenotypic analysis. For the GWAS the 3061 KORA F4 individuals

with metabolomics measurements were divided into two subgroups.

First, a subgroup of 1809 individuals from KORA F4 with, who were

genotyped using a genome-wide SNP-array (see section genotyping

and imputation): Geno-KORA F4. Second, a subgroup of 1218

individuals from KORA F4 with genotyping data generated by

Metabo-Chip from Illumina: Rep-KORA F4. Since Geno-KORA

F4 and Rep-KORA F4 are non overlapping subgroups of individuals

from the KORA F4 cohort they can be considered independent.

Therefore it was possible to take Geno-KORA F4 as discovery

sample and Rep-KORA F4 as first replication sample for the GWAS.

The KORA F3 cohort is a ten years follow-up survey of the

KORA S3 survey examined in 1994–1995 as described previously

[26,27]. For the replication step of the phenotypic analysis

randomly selected 197 males and 180 females (aged 55–79 years)

from the KORA F3 cohort were taken. For 328 individuals (175

males, 153 females) genome-wide genotypes were available. These

were used as second replication cohort for the GWAS. No

evidence of population stratification was found in multiple

published analyses using the KORA cohort [28]. The KORA

F3 and F4 surveys are completely independent with no overlap of

individuals (Figure S3).

Blood Sampling
Blood samples for metabolic analysis were collected during the

years 2006 and 2008 in parallel with the KORA F4 examinations

Figure 4. Manhattan plots for gender-specific genome-wide beta-differences for the metabolite glycine. Genome-wide significant beta-
differences are plotted in red (significance level p,3.8610210).
doi:10.1371/journal.pgen.1002215.g004
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as described in [1,2], and were deep frozen at 280uC until

metabolomic analysis. To avoid variation due to circadian rhythm,

the blood samples were drawn in the morning between 8:00 and

10:00 am after overnight fasting. Material was immediately

horizontal shaken (10 min), followed by 40 min resting at 4uC to

obtain complete coagulation. The material was then centrifuged

(2000 g; 4uC). Serum was aliquoted and kept for 2–4 hours at

4uC, after which it was deep frozen to 280uC until sampling.

Metabolite Measurements
Metabolomic analysis was performed on 3061 subjects from the

population-based cohort KORA F4 and on 377 subjects of the

population-based cohort KORA F3. Men and women were

collected in a random order and samples were randomly put on

plates to exclude batch effects.

Liquid handling of serum samples (10 ml) was performed with

Hamilton Star (Hamilton Bonaduz AG, Bonaduz, Switzerland)

robot and prepared for quantification using the AbsoluteIDQ kit

(BIOCRATES Life Sciences AG, Innsbruck, Austria) as described

previously [1]. Sample analysis were done on API 4000 QTrap

LC/MS/MS System (Applied Biosystems, Darmstadt, Germany)

equipped with Schimadzu Prominence LC20AD pump and SIL-

20AC auto sampler. The complete analytical process was

monitored with the MetIQTM software package, which is an

integral part of the AbsoluteIDQTM kit.

Metabolite Panel
In total, 163 different metabolites were quantified. More

information about the metabolite panel can be found in Text

S1. Metabolite measurements of the 3061 samples were performed

in three batches, with two and three months time lapse in between,

respectively. Within each kit, there are three different quality

controls (QCs) representing gender mixed human plasma samples

provided by the manufacturer. In accordance with the kit

instructions, concentration of each metabolite was adjusted based

on the three QCs to minimize the potential batch effects.

To ensure data quality, metabolites had to meet three criteria:

(1) average value of coefficient of variance (CV) of the three QCs

should be smaller than 25%. (2) 90% of all measured sample

concentrations should be above the limit of detection (LOD). (3)

Correlation coefficients between two duplicated measurements of

144 re-measured samples should be above 0.5 (Table S6). In total,

131 metabolites passed the three quality controls. To detect

sample outliers, the data of the 131 metabolite concentrations

were first scaled to zero mean and unity standard deviation and

were projected onto the unit sphere and Mahalanobis distances

were then obtained. Robust principal components algorithm was

used in the process [29]. Mean and variance were then calculated

for the distances. A cut-off was set at 3 times variance plus mean

distance. Any individual, whose distance was greater than this cut-

off, was marked as an outlier and removed. Outliers were detected

separately for males and females. 131 Metabolites and 3004

samples remained in the dataset. Missing values were using the R

package ‘‘mice’’. Metabolite concentrations were logarithmized for

all subsequent analysis steps.

Genotyping and Imputation
In KORA F4 genome-wide genotyping was done using the

Affymetrix 6.0 GeneChip array (Geno-KORA F4). The algorithm

Birdseed2 was used for calling. Genotyped SNPs were filtered for

an individual call rate of 0.93, SNP call rate 0.93 and Hardy-

Weinberg equilibrium (PHWE .0.001). All remaining SNPs

(651,596) were used for imputation with MACH (v1.0.15).

HapMap CEU version 22 was used as reference population for

calling and imputation. The GWAS replication cohort Rep-

KORA F4 was genotyped on Metabo-Chip, with calling algorithm

GenomeStudio. The second GWAS replication sample KORA F3

was genotyped with the Affymetrix 500 K array. The calling was

performed by BRLMM with reference population HapMap CEU

21. After filtering for individual call rate 0.93 and SNP call rate 0.9

and Hardy-Weinberg equilibrium (PHWE .0.001) the remaining

SNPs were imputed with MACH v1.0.9 using HapMap CEU

version 21 as reference population.

Statistical Analysis
Partial least squares (PLS). PLS, or projection to latent

structures by means of partial least squares, and is a method to

relate a matrix X to a vector y (or to a matrix Y).The x-data are

transformed into a set of a few intermediate linear latent variables

(components). PLS analysis [10] was carried out using the R

package pls to investigate the metabolic profiles of males and

females. Data was visualized by plotting the scores of the first two

components against each other, where each point represented an

individual serum sample. For this analysis, metabolite

concentrations were normalized to have a mean of zero and a

standard deviation of one.

Delta (difference in concentration means for men and

women). For comparison of metabolite concentrations between

men and women we used the delta (D), as it describes the

difference in concentration means for men and women for a

specific metabolite relative to the mean metabolite concentration

in men. Therefore the difference of mean metabolite

concentration in men and mean metabolite concentration in

women is calculated and than divided by the mean metabolite

concentration in men. For example, a value of D= 50% means,

that the mean metabolite concentration in women is 50% lower

than the metabolite concentration in men.

Linear regression. Metabolite concentration differences

between males and females were investigated by linear regression

analysis. The basic model contains the log-transformed metabolite

as dependent, sex as explanatory variable and both age and BMI as

covariates. Moreover, an internal batch variable is included to

account for possible systematic differences that might have been

caused by the metabolite measuring process. To correct for multiple

testing Bonferroni-correction was applied. That means the influence

of sex on a specific metabolite was called significant, if the p-value of

the corresponding test of sex having no effect on (log-transformed)

metabolite is lower than 0.05/131 = 3.861024. For replication we

also applied Bonferroni-correction. That means a difference in sex

on a specific metabolite is called significant, if the direction of the

effect in consistent between discovery and replication cohort and the

p-value for sex having no effect on the metabolite is lower than 0.05

corrected for the number of metabolites taken forward for

replication.

We analysed the influence of anthropometric phenotypes,

diseases and environmental factors by including different covar-

iates to the linear regression and comparison of the structure of the

results. Four models which differ in the use of one or more

additional covariates were performed. The covariates in each

model beside age are waist hip ratio (WHR), lipid parameters

(HDL and LDL cholesterol, triglycerides), type 2 diabetes, alcohol

consumption and smoking. All calculations were performed in R

with standard procedures (lm). Furthermore, a meta-analysis of the

discovery and the replication sample with a fixed effect model was

analyzed to reveal the sex-specific effects of metabolite concen-

trations.

Partial correlation analysis. In order to investigate how

strong the different metabolites correlate with each other and the

Sex-Specific Metabotypes in Human Metabolism
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sex-specific effects propagate through the underlying metabolic

network, we calculated full-order partial correlation coefficients (r)

between all pairs of metabolites. The resulting partial correlation

networks are commonly referred to as Gaussian graphical models

(GGMs), which we have previously demonstrated to be useful for

the analysis of direct metabolite-metabolite effects in the same

population cohort [11]. The GGM was coloured and annotated

according to the b-values and p-values from linear regression

analysis and then exported and visualized using the free yEd graph

editor.
Genome-wide association studies (GWAS). We calculated

GWAS for all 131 metabolites with mach2qtl (v1.0.8) for men and

women separately. We applied an additive model with covariates

age, BMI and an internal variable accounting for batch effects.
Genome-wide test for sex-specific differences in beta-

estimates. We tested each SNP and metabolite for equality of

the beta-estimates for the SNP calculated in the sex-specific

GWAS. Therefore we used an approximately normally distributed

test statistic [30]:

bmen{bwomenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se(bmen)2zse(bwomen)2

q

To take our 131 phenotypes into account we used Bonferroni

correction. Therefore the genome-wide significance level is

561028/131 = 3.8610210 [31].
Replication of sex-specific differences in genetic

effects. We confirm a genetic sex-specific difference as

replicated, if the proportion of the absolute SNP effects in men

and women is the same as in the discovery sample, and the p-value

for the test for difference in effects is lower than the adjusted p-

value.

Replication in KORA F4. We used PLINK for the

calculation.

Further analysis. All further analyses were performed in R.

For both subgroups, men and women, we calculated the

frequencies of each SNP. The explained variance (R2) for each

SNP and metabolite was calculated as the difference of the

coefficients of determination of the model with SNP and without

SNP. The metaanalysis of SNP association with glycine was

performed with METAL (http://www.sph.umich.edu/csg/

abecasis/Metal/index.html) for men and women separately

using the inverse variance weighting.

Supporting Information

Figure S1 KORA study populations with subsamples used in

this study.

(TIFF)

Figure S2 QQ-plots for the sex-stratified GWAS with glycine.

The QQ-plot shows the p-values of the sex stratified GWAS for

glycine in the discovery sample Geno-KORA F4 versus the

expected p-values under the null hypotheses of no SNP having an

effect on glycine.

(JPG)

Figure S3 Regional association plots for sex-stratified GWAS

with glycine around the locus CPS1. Association p-values of SNPs

with glycine for men and women are presented for a region

surrounding rs715, which had the strongest difference in beta-

estimates between men and women. SNPs with genome-wide

significant differences in beta-estimates are highlighted in blue.

The level of linkage disequilibrium of rs715 with other SNPs is

indicated by circle colour ranging from red r2.0.8, orange

0.8.r2.0.5, grey 0.5.r2.0.2 to white 0.2.r2.

(TIFF)

Figure S4 Distribution of partial correlation coefficients. Partial

correlations center around zero with a shift towards positive high

values. When applying a correlation cutoff of r = 0.3, we are left

with 109 out of 8515 correlation values (1.28%).

(TIFF)

Figure S5 Number of clustered groups in the GGM as a

function of the absolute partial correlation cutoff. Note that we did

not count singleton metabolites that is metabolites without any

partial correlation above threshold, here. Most non-singleton

groups emerge in the cutoff range between 0.3 and 0.7, which

corresponds to the figure in the main manuscript. For our lower

cutoff of 0.3, we obtain 14 groups, which can here be regarded as

independent phenotypes in the metabolite pool.

(TIFF)

Table S1 Study population characteristics. Data are presented

as mean (SD) or number of persons (N); BMI indicates body mass

index; HDL high density lipoprotein; LDL low density lipoprotein;

smokers: number of smokers with one or more than one cigarette/

day, high alcohol intake: subjects were counted for high alcohol

intake when they had an alcohol consumption of $0 g alcohol/

day for males and $20 g alcohol/day for females. (A) Study

populations used for phenotypic analysis. (B) Study populations

used for genotypic analysis.

(DOCX)

Table S2 Phenotypic metabotype differences between males and

females of the discovery sample KORA F4. P-values were

calculated by a linear regression model with metabolite concen-

tration as outcome and sex as explanatory variable adjusted for

different covariables. Gray shaded columns show significant p-

values for differences in the metabolite concentrations between

males and females after Bonferroni correction (significance level

after multiple testing correction = p-value,3.861024).

(DOCX)

Table S3 Phenotypic metabotype differences between males and

females of the replication sample KORA F3. P-values were

calculated by a linear regression model with metabolite concen-

tration as outcome and sex as explanatory variable adjusted for

age, BMI and waist-hip ratio (WHR). Gray shaded columns show

significant p-values for differences in the metabolite concentrations

between males and females after Bonferroni correction (signifi-

cance level after multiple testing = p-value,3.861024).

(DOCX)

Table S4 Comparison of different adjustments in association of

SNPs with glycine. Results for SNPs which showed a significant

difference in beta-estimates for KORA F4 with the adjustment of

sex-specific GWAs for BMI (age, batch), for different adjustment

for waist-hip ratio (WHR) (age, batch) or adjustment for WHR

and BMI (age, batch).

(DOCX)

Table S5 Detailed information for SNPs with significant gender

differences in beta-estimates for association with glycine. Minor

allele frequency is calculated for men and women separately in

each study. Imputation quality (RSQ) respectively call rate for

genotyped SNPs is calculated based on all IDs.

(DOCX)

Table S6 Full biochemical names of all 131 metabolites used for

further analysis that were measured on the Biocrates Absolute
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IDQ kit. Abbreviations and full biochemical names of the 131

metabolites are shown in the first and second columns,

respectively. The third column lists shows the correlation

coefficients (r) between two duplicated measurements of 144 re-

measured samples. The following column shows percentage of

3061 individuals above limit of detection (LOD) and the last

column shows the mean value of the correlation coefficient (CV) of

the three quality controls for the three batches.

(DOCX)

Table S7 Excluded metabolites that were measured on the

Biocrates AbsoluteIDQ kit. Abbreviations and full biochemical

names of the excluded metabolites are shown in the first and

second columns, respectively. The third column shows the

correlation coefficients (r) between two duplicated measurements

of 144 re-measured samples. The following column shows

percentage of 3061 individuals above limit of detection (LOD).

Mean value of the correlation coefficient (CV) of the three quality

controls for the three batches is shown in the last column.

(DOCX)

Table S8 Metabolite concentrations of the study cohorts KORA

F4 and KORA F3 and the relative sex-specific difference (D in %).

D= (Mean(metabolite concentration of men) – mean(metabolite

concentration of women) ) /mean (metabolite concentration of

men); difference of metabolite concentrations between men and

women in %.

(DOCX)

Text S1 Metabolite panel.

(DOC)
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