124 research outputs found

    Evidence of positive tectonic inversion in the north-central sector of the Sicily Channel (Central Mediterranean)

    Get PDF
    In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multi-channel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a ~80-km-long deformation belt, characterized by a set of WNW\u2013ESE to NW\u2013SE fault segments showing a poly-phasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean\u2013Piacenzian time by dextral strike-slip motion, as a consequence of the Africa\u2013Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes

    Modelling tectonic deformation along the North-Anatolian Fault in the Sea of Marmara

    Get PDF
    Using analogue techniques, we attempted to model the complex tectonic deformation pattern observed along the North-Anatolian Fault in the Sea of Marmara from morpho-bathymetry and seismic reflection images. In particular this paper focuses on the so-called Cinarcik segment of the fault connecting the eastern Izmit segment, which entirely ruptured during the Mw 7.4, 1999 earthquake, to the western segment of the Central High. The Çınarcık segment, potentially loaded after the Izmit earthquake, is expected to rupture during an earthquake occurring in the near future, possibly the next decades, with a high potential to affect the Istanbul metropolitan area. Our analysis suggests that the development of the observed structures accommodating strike-slip, transtensional and transpressional deformations, could be explained by changes in the geometry of fault segments within a right-lateral strike-slip tectonic regime. Tectonic deformations were reproduced in the analogue model by imposing a small (about 10°) and sharp difference in the relative orientations of the strike-slip segments at the edges of a major releasing bend. In the model slower strain accumulation occurs along the analogue of the Çınarcık segment than along the analogue of the Izmit segment of the fault. This would predict a delay for earthquakes triggered by stress transfer between the Izmit and Çınarcık segments. The model further predicts that most of the deformation in the Çınarcık basin is controlled by the sharp changes in the geometry of the fault itself

    Repeated (4D) marine geophysical surveys as a tool for studying the coastal environment and ground-truthing remote-sensing observations and modeling

    Get PDF
    Sandy beaches and the nearshore environment are dynamic coastal systems characterized by sediment mobilization driven by alternating stormy and mild wave conditions. However, this natural behavior of beaches can be altered by coastal defense structures. Repeated surveys carried out with autonomous surface vehicles (ASVs) may represent an interesting tool for studying nearshore dynamics and testing the effects of mitigation strategies against erosion. We present a one-year experiment involving repeated stratigraphic and morpho-bathymetric surveys of a nearshore environment prone to coastal erosion along the Emilia-Romagna coast (NE Italy), the Lido di Dante beach, carried out between October 2020 and December 2021 using an ASV. Seafloor and subseafloor “snapshots” collected at different time intervals enabled us to delineate the seasonal variability and shed light on key controlling variables, which could be used to integrate and calibrate remote-sensing observations and modeling. The results demonstrated that repeated surveys could be successfully employed for monitoring coastal areas and represent a promising tool for studying coastal dynamics on a medium/short (years/months) timescale

    Possible tsunami signatures from an integrated study in the Augusta Bay offshore

    Get PDF
    Twelve anomalous layers, marked by a high concentration of displaced epiphytic foraminifera (species growing in vegetated substrates like the Posidonia oceanica) and subtle grain-size changes were found in a 6.7 mlong, fine sediment core (MS-06), sampled 2 kmoff the shore of the Augusta Harbor (Eastern Sicily) at a depth of 72 m, recording the past 4500 yrs of deposition. Because concentrations of epiphytic foraminifera are quite common in infralittoral zones, but not expected at −72 m, we believe that these anomalous layers might be related to the occurrence of tsunamis causing substantial uprooting and seaward displacement of P. oceanica blades with their benthic biota. Our approach involved the study of geophysical data (morphobathymetry, seismic reflection, and seafloor reflectivity) and sediment samples, including X-ray imaging, physical properties, isotopic dating, tephrochronology, grain-size and micropaleontology. Correlations between anomalous layers and tsunami events have been supported by a multivariate analysis on benthic foraminifera assemblage and dates of historical tsunami records. We found that four out of the eleven layers were embedded in age intervals encompassing the dates of major tsunamis that hit eastern Sicily (1908, 1693, and 1169) and the broader Eastern Mediterranean (Santorini at about BP 3600). One more layer, even if less distinct than the others, was also defined and may be the evidence for the AD 365 Crete tsunami

    A depositional model for seismo-turbidites in confined basins based on Ionian Sea deposits

    Get PDF
    This study investigates Ionian Sea seismo-turbidite (ST) deposits that we interpret to be triggered by major historic earthquakes and tsunamis in the Calabrian Arc. ST beds can be correlated with the AD 1908 Mw 7.24 Messina, AD 1693 Mw 7.41 Catania, and AD 1169 Mw 6.6 Eastern Sicily earthquakes while two previously unknown turbidites might have been generated by the AD 1818 Mw 6.23 Catania and AD 1542 Mw 6.77 Siracusa earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of STs reveal cyclic patterns of STa, STb, STc and STd sedimentary units for each earthquake with an associated tsunami. The STa unit contains multiple ST stacks with different mineralogy, geochemistry foraminiferal assemblages and sedimentary structures that are deposited from synchronous multiple slope failures and turbidity currents. The STb homogenite graded mud unit overlying the STa unit is deposited by the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The STc laminated and marine-sourced unit results from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The STd unit is a tsunamite cap deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the textural gradation of the upper unit and a more continental source of the tsunamite cap which includes C/N >10 and the presence of inner shelf foraminifera with a lack of abyssal species. This interpretation is in agreement with the lack of a tsunamite cap for the turbidite likely linked to the AD 1542 historic earthquake that is not associated with a tsunami. The new sedimentologic criteria identifies the final seiche and tsunamite cap deposits of STs and provides a model that can now be tested in other locations to better understand the different depositional processes of seismo-turbidites in confined basins

    The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults

    Get PDF
    The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African-Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw > 7:0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). High-resolution bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ' 22 m high and ' 1100 m in diameter with steep slopes (up to a dip of 22). It sits atop the Calabrian accretionary wedge and a system of flower-like oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustal-derived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about-3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards

    RAPPORTO SULLE INDAGINI DI SISMICA A RIFLESSIONE, GRAVIMETRICHE, MAGNETOMETRICHE, MORFOBATIMETRICHE E CAMPIONAMENTO FONDO MARE NELL’ ARCO CALABRO (MAR IONIO) CAMPAGNA CALAMARE08

    Get PDF
    The study of the Calabrian Arc in the Ionian Sea is key to understanding of the geological processes in the Mediterranean Sea. We present the technical details and results of cruise CALAMARE08 with N/O Urania during spring 2008. We acquired a large set of geological and geophysical data, among them Multichannels Seismic and SBP, magnetometry, gravimetry, swath bathymetry and coring of sea bottom

    ST6Gal1 targets the ectodomain of ErbB2 in a site-specific manner and regulates gastric cancer cell sensitivity to trastuzumab

    Get PDF
    The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab's target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both alpha 2,6- and alpha 2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2's ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor's trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant alpha 2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.Proteomic
    corecore